Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 066201    DOI: 10.1088/0256-307X/28/6/066201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
The Effect of Atomic Vacancies and Grain Boundaries on Mechanical Properties of GaN Nanowires
XIE Shi-Feng1, CHEN Shang-Da1**, SOH Ai-Kah2
1Faculty of Materials, Optoelectronics and Physics, Xiangtan University, Hunan 411105
2Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
Cite this article:   
XIE Shi-Feng, CHEN Shang-Da, SOH Ai-Kah 2011 Chin. Phys. Lett. 28 066201
Download: PDF(1242KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Molecular dynamics simulations are carried out to investigate the influences of various defects on mechanical properties of wurtzite GaN nanowires by adopting the empirical Stillinger-Weber potential. Different types of vacancies and grain boundaries are considered and the uniaxial loading condition is implemented along the [001] direction. It is found that surface defects have less impact on Young's moduli and critical stresses of GaN nanowires compared with random defects. The grain boundary normal to the axial direction of a nanowire would not significantly affect Young's moduli of nanowires. However, the inversion domain grain boundaries with and without wrong bonds would significantly lower Young's moduli of GaN nanowires. In addition, the inversion domain grain boundary affects the critical stress of GaN nanowires more than the grain boundary with interface normal to the axial direction of the nanowire.
Keywords: 62.20.de      62.23.Hj      83.10.Mj     
Received: 18 October 2010      Published: 29 May 2011
PACS:  62.20.de (Elastic moduli)  
  62.23.Hj (Nanowires)  
  83.10.Mj (Molecular dynamics, Brownian dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/066201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/066201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIE Shi-Feng
CHEN Shang-Da
SOH Ai-Kah
[1] Johnson J C et al 2002 Nature Mater. 1 106
[2] Yan H Y, Xiu X Q et al 2010 Chin. Phys. Lett. 27 127801
[3] Stern E, Cheng G et al 2005 Nanotechnology 16 2941
[4] Chen Y, Jiang Y et al 2011 Chin. Phys. Lett. 28 048101
[5] Seryogin G, Shalish I et al 2005 Nanotechnology 16 2342
[6] Duan X F and Lieber C M 1999 J. Am. Chem. Soc. 122 188
[7] Kuykendall T, Pauzauskie P J, Zhang Y F, Goldberger J, Sirbuly D, Denlinger J and Yang P D 2004 Nature Mater. 3 524
[8] Liu B D, Bando Y, Tang C C, Xu F F and Golberg D 2005 Appl. Phys. Lett. 87 073106
[9] Kipshidze G, Yavich B et al 2005 Appl. Phys. Lett. 86 033104
[10] Feng G, Nix W D, Yoon Y K and Lee C J 2006 J. Appl. Phys. 99 074304
[11] Chen Y X, Stevenson I, Pouy R, Wang L D, McIlroy D N, Pounds T, Norton M G and Aston D E 2007 Nanotechnology 18 135708
[12] Wang Z G, Zu X T, Yang L, Gao F and Weber W J 2007 Phys. Rev. B 76 045310
[13] Wang Z G, Zu X T, Yang L, Gao F and Weber W J 2008 Physica E 40 561
[14] Moon W H, Kim H J and Choi C H 2007 Scr. Mater. 56 345
[15] Agrawal R, Peng B and Espinosa H D 2009 Nano Lett. 9 4177
[16] http://lammps.sandia.gov/
[17] Béré A, Chen J, Ruterana P, Serra A and Nouet G 2002 Compd. Mater. Sci. 24 144
[18] Hoover W G 1985 Phys. Rev. A 31 1695
[19] Rafii-Tabar H 2004 Phys. Rep. 390 235
Rafii-Tabar H 2004 Phys. Rep. 394 357 (Erratum)
[20] Nam C Y, Jaroenapibal P, Tham D, Luzzi D E, Evoy S and Fischer J E 2006 Nano Lett. 6 153
[21] Tham D, Nam C Y and Fischer J E 2006 Adv. Funct. Mater. 16 1197
Related articles from Frontiers Journals
[1] CHEN Ke, HE Jian-Jun, LI Ming-Yu, LaPierre R. Fabrication of GaAs Nanowires by Colloidal Lithography and Dry Etching[J]. Chin. Phys. Lett., 2012, 29(3): 066201
[2] LI Bin, **, LI Chuan-Xi, WEI Cheng-Long, . Surface Effects on the Postbuckling of Nanowires[J]. Chin. Phys. Lett., 2011, 28(4): 066201
[3] QIU Ming-Xia, RUAN Shuang-Chen**, GAO Biao, HUO Kai-Fu, ZHAI Jian-Pang, LI Ling, LIAO Hui, XU Xin-Tong . H2-Assistance One-Step Growth of Si Nanowires and Their Growth Mechanism[J]. Chin. Phys. Lett., 2011, 28(10): 066201
[4] YU Yan-Long, ZHENG Li-Hui, XU Xin, SUN Hong-Yu** . Thermal Expansion Behavior of Hexagonal ZnS Single-Crystal Nanowires Embedded in Anodized Aluminum Oxide Template[J]. Chin. Phys. Lett., 2010, 27(10): 066201
[5] JIANG Xiao-Shu, MI Shu, SUN Peng-Jun, LU Yuan, LIANG Jiu-Qing. Bulk Modulus and Electronic Band Structure of ZnGa2X4(X=S,Se): a First-Principles Study[J]. Chin. Phys. Lett., 2009, 26(7): 066201
[6] XU Guo-Liang, CHEN Jing-Dong, XIA Yao-Zheng, LIU Xue-Feng, LIU Yu-Fang, ZHANG Xian-Zhou. First-Principles Calculations of Elastic and Thermal Properties of Lanthanum Hexaboride[J]. Chin. Phys. Lett., 2009, 26(5): 066201
[7] JIANG Min-Qiang, JIANG Si-Yue$, DAI Lan-Hong,. Inherent Shear-Dilatation Coexistence in Metallic Glass[J]. Chin. Phys. Lett., 2009, 26(1): 066201
[8] NIE Chao, ZHANG Rong, XIE Zi-Li, XIU Xiang-Qiang, LIU Bin, FU De-Yi, LIU Qi-Jia, HAN Ping, GU Shu-Lin, SHI Yi, ZHENG You-Dou. Synthesis of [100] Wurtzite InN Nanowires and [011] Zinc-Blende InN Nanorods[J]. Chin. Phys. Lett., 2008, 25(5): 066201
[9] ZHANG Dong-Dong, XUE Cheng-Shan, ZHUANG Hui-Zhao, HUANG Ying-Long, WANG Zou-Ping, WANG Ying, GUO Yong-Fu. Fabrication and Characterization of Mg-Doped GaN Nanowires[J]. Chin. Phys. Lett., 2008, 25(11): 066201
[10] SUN Zhi-Wei, LIU Jie, XU Sheng-Hua. Towards an Understanding of the Influence of Sedimentation on Colloidal Aggregation by Peclet Number[J]. Chin. Phys. Lett., 2005, 22(8): 066201
[11] LIU Jie, SUN Zhi-Wei, AA Yan. Non-Gravitational Effects with Density-Matching in Evaluating the Influence of Sedimentation on Colloidal Coagulation[J]. Chin. Phys. Lett., 2005, 22(12): 066201
[12] SUN Zhi-Wei, CHEN Zhi-Ying. Computer Simulation of Influence of Sedimentation on Rapid Coagulation[J]. Chin. Phys. Lett., 2003, 20(9): 066201
Viewed
Full text


Abstract