Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060303    DOI: 10.1088/0256-307X/28/6/060303
GENERAL |
A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices
HUANG Bei-Bing1**, WAN Shao-Long2
1Department of Experiment Teaching, Yancheng Institute of Technology, Yancheng 224051
2Institute for Theoretical Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
HUANG Bei-Bing, WAN Shao-Long 2011 Chin. Phys. Lett. 28 060303
Download: PDF(783KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A finite temperature phase diagram of the rotating Bose–Hubbard model, including the crossover between Mott insulator and the normal state, is derived on the frame of the Gutzwiller mean-field theory. In addition, we calculate the critical temperature of superfluid-normal phase transition.
Keywords: 03.75.Lm      05.30.Jp      73.43.Nq     
Received: 08 April 2011      Published: 29 May 2011
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.30.Jp (Boson systems)  
  73.43.Nq (Quantum phase transitions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060303       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Bei-Bing
WAN Shao-Long
[1] Fisher M P A et al 1989 Phys. Rev. B 40 546
[2] Jaksch D et al 1998 Phys. Rev. Lett. 81 3108
[3] Greiner M et al 2002 Nature 415 39
[4] Luthra M S et al 2008 Phys. Rev. B 78 165104
[5] Argüelles A and Santos L 2007 Phys. Rev. A 75 053613
[6] Polak T P and Kopeć T K 2007 Phys. Rev. B 76 094503
[7] McKay D et al 2008 Nature 453 76
[8] Trotzky S, Cheinet P et al 2008 Science 319 295
[9] Kasamatsu K and Tsublta M 2006 Phys. Rev. Lett. 97 240404
[10] Bhat R, Holland M J and Carr L D 2006 Phys. Rev. Lett. 96 060405
[11] Pu H, Baksmaty L O, Yi S and Bigelow N P 2005 Phys. Rev. Lett. 94 190401
[12] Reijnders J W and Duine R A 2004 Phys. Rev. Lett. 93 060401
[13] Martin J I, Velez M, Nogues J and Schuller I K 1997 Phys. Rev. Lett. 79 1929
[14] Morgan D J and Ketterson J B 1998 Phys. Rev. Lett. 80 3614
[15] Zhuravlev V and Maniv T 2003 Phys. Rev. B 68 174507
[16] Pogosov W V, Rakhmanov A L and Moshchalkov V V 2003 Phys. Rev. B 67 014532
[17] Niemeyer M, Freericks J K and Monien H 1999 Phys. Rev. B 60 2357
[18] Oktel M Ö, Nitǎ M and Tanatar B 2007 Phys. Rev. B 75 045133
[19] Umucalilar R O and Oktel M Ö 2007 Phys. Rev. A 76 055601
[20] Hofstadter D R 1976 Phys. Rev. B 14 2239
[21] Jaksch D and Zoller P 2003 New J. Phys. 5 56
[22] Sheshadri K, Krishnamurthy H R, Pandit R and Ramakrishnan T V 1993 Europhys. Lett. 22 257
[23] Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
[24] Durić T and Lee D K K 2010 Phys. Rev. B 81 014520
[25] Zhang J, Jian C, Ye F and Zhai H 2010 Phys. Rev. Lett. 105 155302
[26] Powell S, Barnett R, Sensarma R and Sarma S D 2010 Phys. Rev. Lett. 104 255303
[27] Buonsante P and Vezzani A 2004 Phys. Rev. A 70 033608
[28] Goldbaum D S and Mueller E J 2008 Phys. Rev. A 77 033629
Related articles from Frontiers Journals
[1] WANG Qiang, YE Chong, FU Li-Bin. Quantum Cyclotron Orbits of a Neutral Atom Trapped in a Triple Well with a Synthetic Gauge Field[J]. Chin. Phys. Lett., 2012, 29(6): 060303
[2] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 060303
[3] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 060303
[4] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 060303
[5] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 060303
[6] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 060303
[7] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 060303
[8] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 060303
[9] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 060303
[10] ZHANG Zhi-Qiang, WANG Deng-Long**, LUO Xiao-Qing, HE Zhang-Ming, DING Jian-Wen . Controlling of Fusion of Two Solitons in a Two-Component Condensate by an Anharmonic External Potential[J]. Chin. Phys. Lett., 2011, 28(5): 060303
[11] CHENG Ze** . Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction[J]. Chin. Phys. Lett., 2011, 28(5): 060303
[12] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 060303
[13] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 060303
[14] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 060303
[15] WANG Ping, ZHENG Qiang, WANG Wen-Ge. Decay of Loschmidt Echo at a Critical Point in the Lipkin-Meshkov-Glick model[J]. Chin. Phys. Lett., 2010, 27(8): 060303
Viewed
Full text


Abstract