GENERAL |
|
|
|
|
A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices |
HUANG Bei-Bing1**, WAN Shao-Long2
|
1Department of Experiment Teaching, Yancheng Institute of Technology, Yancheng 224051
2Institute for Theoretical Physics and Department of Modern Physics, University of Science and Technology of China, Hefei 230026
|
|
Cite this article: |
HUANG Bei-Bing, WAN Shao-Long 2011 Chin. Phys. Lett. 28 060303 |
|
|
Abstract A finite temperature phase diagram of the rotating Bose–Hubbard model, including the crossover between Mott insulator and the normal state, is derived on the frame of the Gutzwiller mean-field theory. In addition, we calculate the critical temperature of superfluid-normal phase transition.
|
Keywords:
03.75.Lm
05.30.Jp
73.43.Nq
|
|
Received: 08 April 2011
Published: 29 May 2011
|
|
PACS: |
03.75.Lm
|
(Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)
|
|
05.30.Jp
|
(Boson systems)
|
|
73.43.Nq
|
(Quantum phase transitions)
|
|
|
|
|
[1] Fisher M P A et al 1989 Phys. Rev. B 40 546
[2] Jaksch D et al 1998 Phys. Rev. Lett. 81 3108
[3] Greiner M et al 2002 Nature 415 39
[4] Luthra M S et al 2008 Phys. Rev. B 78 165104
[5] Argüelles A and Santos L 2007 Phys. Rev. A 75 053613
[6] Polak T P and Kopeć T K 2007 Phys. Rev. B 76 094503
[7] McKay D et al 2008 Nature 453 76
[8] Trotzky S, Cheinet P et al 2008 Science 319 295
[9] Kasamatsu K and Tsublta M 2006 Phys. Rev. Lett. 97 240404
[10] Bhat R, Holland M J and Carr L D 2006 Phys. Rev. Lett. 96 060405
[11] Pu H, Baksmaty L O, Yi S and Bigelow N P 2005 Phys. Rev. Lett. 94 190401
[12] Reijnders J W and Duine R A 2004 Phys. Rev. Lett. 93 060401
[13] Martin J I, Velez M, Nogues J and Schuller I K 1997 Phys. Rev. Lett. 79 1929
[14] Morgan D J and Ketterson J B 1998 Phys. Rev. Lett. 80 3614
[15] Zhuravlev V and Maniv T 2003 Phys. Rev. B 68 174507
[16] Pogosov W V, Rakhmanov A L and Moshchalkov V V 2003 Phys. Rev. B 67 014532
[17] Niemeyer M, Freericks J K and Monien H 1999 Phys. Rev. B 60 2357
[18] Oktel M Ö, Nitǎ M and Tanatar B 2007 Phys. Rev. B 75 045133
[19] Umucalilar R O and Oktel M Ö 2007 Phys. Rev. A 76 055601
[20] Hofstadter D R 1976 Phys. Rev. B 14 2239
[21] Jaksch D and Zoller P 2003 New J. Phys. 5 56
[22] Sheshadri K, Krishnamurthy H R, Pandit R and Ramakrishnan T V 1993 Europhys. Lett. 22 257
[23] Oosten D V, Straten P V D and Stoof H T C 2001 Phys. Rev. A 63 053601
[24] Durić T and Lee D K K 2010 Phys. Rev. B 81 014520
[25] Zhang J, Jian C, Ye F and Zhai H 2010 Phys. Rev. Lett. 105 155302
[26] Powell S, Barnett R, Sensarma R and Sarma S D 2010 Phys. Rev. Lett. 104 255303
[27] Buonsante P and Vezzani A 2004 Phys. Rev. A 70 033608
[28] Goldbaum D S and Mueller E J 2008 Phys. Rev. A 77 033629
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|