Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060205    DOI: 10.1088/0256-307X/28/6/060205
GENERAL |
A New Multi-Symplectic Scheme for the KdV Equation
LV Zhong-Quan1, XUE Mei1, WANG Yu-Shun1,2**
1Jiangsu Key Laboratory for NSLSCS, School of Mathematical Science, Nanjing Normal University, Nanjing 210046
2 Lasg, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029
Cite this article:   
LV Zhong-Quan, XUE Mei, WANG Yu-Shun 2011 Chin. Phys. Lett. 28 060205
Download: PDF(561KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a new multi-symplectic integrating scheme for the Korteweg-de Vries (KdV) equation. The new scheme is derived by concatenating spatial discretization of the multi-symplectic Fourier pseudospectral method with temporal discretization of the symplectic Euler scheme. The new scheme is explicit in the sense that it does not need to solve nonlinear algebraic equations. It is verified that the multi-symplectic semi-discretization of the KdV equation under periodic boundary conditions has N semi−discrete multi-symplectic conservation laws. We also prove that the full-discrete scheme has N full-discrete multi-symplectic conservation laws. Numerical experiments of the new scheme on the KdV equation are made to demonstrate the stability and other merits for long-time integration.
Keywords: 02.60.Cb      02.70.Bf      45.10.Na      45.20.Dh     
Received: 22 February 2011      Published: 29 May 2011
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.Bf (Finite-difference methods)  
  45.10.Na (Geometrical and tensorial methods)  
  45.20.dh (Energy conservation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060205       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060205
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Zhong-Quan
XUE Mei
WANG Yu-Shun
[1] Zabusky N J et al 1965 Phys. Rev. Lett. 15 240
[2] Marsden J E et al 1998 Commun. Math. Phys. 199 351
[3] Bridges T J and Reich S 2001 Phys. Lett. A 284 184
[4] Cai J X et al 2006 J. Math. Phys. 47 123508
[5] Sun Y and Tse P S P 2011 J. Comput. Phys. 230 2076
[6] Cai J X et al 2009 J. Math. Phys. 50 033510
[7] Zhao P F et al 2000 J. Phys. A: Math. Gen. 33 3613
[8] Wang Y S et al 2007 Chin. Phys. Lett. 24 312
[9] Ascher U M et al 2004 Appl. Numer. Math. 48 255
[10] Bridges T J and Reich S 2001 Physica D 152 491
[11] Wang Y S et al 2008 Chin. Phys. Lett. 25 1538
[12] Wang H P et al 2008 Chin. Phys. Lett. 25 2335
[13] Chen J B et al 2001 Electr. Trans. Numer. Anal. 12 193
[14] Kong L H et al 2006 Chin. J. Comput. Phys. 23 25
[15] Wang J 2009 Comput. Phys. Commun. 180 1063
[16] Bridges T J and Derks G 1999 Proc. R. Soc. London A 455 2427
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060205
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 060205
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 060205
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 060205
[5] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 060205
[6] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 060205
[7] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 060205
[8] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 060205
[9] SHEN Hua, LIU Kai-Xin, **, ZHANG De-Liang . Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme[J]. Chin. Phys. Lett., 2011, 28(12): 060205
[10] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 060205
[11] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 060205
[12] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 060205
[13] YUE Song, LI Zhi, CHEN Jian-Jun, GONG Qi-Huang. Bending Loss Calculation of a Dielectric-Loaded Surface Plasmon Polariton Waveguide Structure[J]. Chin. Phys. Lett., 2010, 27(2): 060205
[14] WANG Gang, ZHANG De-Liang, LIU Kai-Xin,. Numerical Study on Critical Wedge Angle of Cellular Detonation Reflections[J]. Chin. Phys. Lett., 2010, 27(2): 060205
[15] KIM Bong-Hwan**, PARK Seoung-Hwan***, LEE Jung-Hee, MOON Yong-Tae. Effect of In Composition on Two-Dimensional Electron Gas in Wurtzite AlGaN/InGaN Heterostructures[J]. Chin. Phys. Lett., 2010, 27(11): 060205
Viewed
Full text


Abstract