Chin. Phys. Lett.  2011, Vol. 28 Issue (6): 060204    DOI: 10.1088/0256-307X/28/6/060204
GENERAL |
Asymptotic Behavior of Periodic Wave Solution to the Hirota–Satsuma Equation
WU Yong-Qi
Mathematics and Computational Science School, Zhanjiang Normal University, Zhanjiang 524048
Cite this article:   
WU Yong-Qi 2011 Chin. Phys. Lett. 28 060204
Download: PDF(462KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The one- and two-periodic wave solutions for the Hirota–Satsuma (HS) equation are presented by using the Hirota derivative and Riemann theta function. The rigorous proofs on asymptotic behaviors of these two solutions are given such that soliton solution can be obtained from the periodic wave solution in an appropriate limiting procedure.
Keywords: 02.30.Jr     
Received: 20 February 2011      Published: 29 May 2011
PACS:  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/6/060204       OR      https://cpl.iphy.ac.cn/Y2011/V28/I6/060204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Yong-Qi
[1] Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)
[2] Ablowitz M J, Kaup D J, Newell A C and Segur H 1974 Stud. Appl. Math. 53 249
[3] Hirota R and Satsuma J 1976 J. Phys. Soc. Jpn. 40 611
[4] Zhang Y and Chen D Y 2004 Chaos, Solitons & Fractals 20 343
[5] Cai K J, Tian B, Zhang H and Meng X H 2009 Commun. Theor. Phys. 52 473
[6] Matsuno Y 1984 Bilinear Transformation Method (London: Academic Press Inc.)
[7] Farkas H M and Kra I 1992 Riemann Surfaces (New York: Springer-Verlag)
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 060204
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 060204
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 060204
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 060204
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 060204
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 060204
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 060204
[8] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 060204
[9] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 060204
[10] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 060204
[11] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 060204
[12] ZHAO Song-Lin**, ZHANG Da-Jun, CHEN Deng-Yuan . A Direct Linearization Method of the Non-Isospectral KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060204
[13] ZHAO Li-Yun, GUO Bo-Ling, HUANG Hai-Yang** . Blow-up Solutions to a Viscoelastic Fluid System and a Coupled Navier–Stokes/Phase-Field System in R2[J]. Chin. Phys. Lett., 2011, 28(6): 060204
[14] WU Jian-Ping . Bilinear Bäcklund Transformation for a Variable-Coefficient Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2011, 28(6): 060204
[15] CAO Jian-Zhu, FANG Chao**, SUN Li-Feng . Analytical Solution of Fick's Law of the TRISO-Coated Fuel Particles and Fuel Elements in Pebble-Bed High Temperature Gas-Cooled Reactors[J]. Chin. Phys. Lett., 2011, 28(5): 060204
Viewed
Full text


Abstract