Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 059601    DOI: 10.1088/0256-307X/28/5/059601
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Standing Shocks in the Inner Slow Solar Wind
LI Bo1,2**, CHEN Yan-Jun1, LI Xing3
1Shandong Provincial Key Laboratory of Optical Astronomy & Solar-Terrestrial Environment, School of Space Science and Physics, Shandong University at Weihai, Weihai 264209
2 State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190
3Institute of Mathematics and Physics, Aberystwyth University, Aberystwyth SY23 3BZ, UK
Cite this article:   
LI Bo, CHEN Yan-Jun, LI Xing 2011 Chin. Phys. Lett. 28 059601
Download: PDF(505KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We examine whether the flow tube along the edge of a coronal streamer supports standing shocks in the inner slow wind by solving an isothermal wind model in terms of the Lambert W function. It is shown that solutions with standing shocks do exist and they exist in a broad area in the parameter space characterizing the wind temperature and flow tube. In particular, streamers with cusps located at a heliocentric distance ≳3.2 Rʘ can readily support discontinuous slow winds with temperatures barely higher than 1 MK.
Keywords: 96.50.Ci      96.60.P-      52.35.Tc      52.65.Kj     
Received: 14 December 2010      Published: 26 April 2011
PACS:  96.50.Ci (Solar wind plasma; sources of solar wind)  
  96.60.P- (Corona)  
  52.35.Tc (Shock waves and discontinuities)  
  52.65.Kj (Magnetohydrodynamic and fluid equation)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/059601       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/059601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Bo
CHEN Yan-Jun
LI Xing
[1] Holzer T E 1977 J. Geophys. Res. 82 23
[2] Hasan S S and Venkatakrishnan P 1982 Sol. Phys. 80 385
[3] Habbal S R and Tsinganos K 1983 J. Geophys. Res. 88 1965
[4] Habbal S R and Rosner R 1984 J. Geophys. Res. 89 10645
[5] Habbal S R, Hu Y Q and Esser R 1994 J. Geophys. Res. 99 8465
[6] Leer E and Holzer T E 1990 Astrophys. J. 358 680
[7] Marsch E and Tu C Y 1997 Sol. Phys. 176 87
[8] Wang Y M, Ko Y K and Grappin R 2009 Astrophys. J. 691 760
[9] Wang Y M and Sheeley N R Jr. 1990 Astrophys. J. 355 726
[10] Cranmer S R 2004 Am. J. Phys. 72 1397
[11] Corless R M, Gonnet G H, Hare D E G, Jeffrey D J and Knuth D E 1996 Adv. Comput. Math. 5 329
[12] Velli M 2001 Astrophys. Space Sci. 277 157
[13] Esser R and Habbal S R 1990 Sol. Phys. 129 153
[14] Strachan L, Suleiman R, Panasyuk A V, Biesecker D A and Kohl J L 2002 Astrophys. J. 571 1008
[15] Fineschi S, Gardner L D, Kohl J L, Romoli M and Noci G 1998 Proc. SPIE 3443 67
[16] Habbal S R, Esser R and Arndt M B 1993 Astrophys. J. 413 435
[17] Li B, Li X and Labrosse N 2006 J. Geophys. Res. 111 A08106
Related articles from Frontiers Journals
[1] OUYANG Ji-Ting, DUAN Xiao-Xi, XU Shao-Wei, HE Feng. The Key Factor for Uniform and Patterned Glow Dielectric Barrier Discharge[J]. Chin. Phys. Lett., 2012, 29(2): 059601
[2] ZHANG Shao-Hua, **, FENG Xue-Shang, WANG Yi, YANG Li-Ping, . Department of Physics and Institute of Modern Physics, Ningbo University, Ningbo 315211
[J]. Chin. Phys. Lett., 2011, 28(8): 059601
[3] WANG Feng**, PENG Xiao-Shi, JIAO Chun-Ye, LIU Shen-Ye, JIANG Xiao-Hua, DING Yong-Kun . Shock-Timing Experiment Using a Two-Step Radiation Pulse with a Polystyrene Target[J]. Chin. Phys. Lett., 2011, 28(8): 059601
[4] HE Yong**, HU Xi-Wei, JIANG Zhong-He . Similar Rayleigh–Taylor Instability of Shock Fronts Perturbed by Corrugated Interfaces[J]. Chin. Phys. Lett., 2011, 28(5): 059601
[5] YANG Li-Ping, **, FENG Xue-Shang, XIANG Chang-Qing, JIANG Chao-Wei, . Numerical Validation and Comparison of Three Solar Wind Heating Methods by the SIP-CESE MHD Model[J]. Chin. Phys. Lett., 2011, 28(3): 059601
[6] YU Xin, ZHAO Qiang. Nonlinear Shock and Kink Waves with Complete Coriolis Force in Earth's Atmosphere[J]. Chin. Phys. Lett., 2009, 26(3): 059601
[7] HAO Mei-Lan, DAI Zhong-Ling, WANG You-Nian. Simulation of Dual Frequency Capacitive Sheath over a Concave Electrode in Low Pressure[J]. Chin. Phys. Lett., 2009, 26(12): 059601
[8] LIU Yu, DAI Zhong-Ling, WANG You-Nian. Dust Particle Properties in a Dual-Frequency Driven Sheath[J]. Chin. Phys. Lett., 2008, 25(4): 059601
[9] HE Yong, HU Xi-Wei, JIANG Zhong-He. Compressibility Effects on the Rayleigh--Taylor Instability Growth Rates[J]. Chin. Phys. Lett., 2008, 25(3): 059601
[10] DAI Zhong-Ling, LIU Chuan-Sheng, WANG You-Nian. Comparison between Dual Radio Frequency- and Pulse-Driven Sheath near Insulating Substrates[J]. Chin. Phys. Lett., 2008, 25(2): 059601
[11] S. A. Khan, Q. Haque. Electrostatic Nonlinear Structures in Dissipative Electron--Positron--Ion Quantum Plasmas[J]. Chin. Phys. Lett., 2008, 25(12): 059601
[12] JIANG Zhong-He, HE Yong, HU Xi-Wei, LV Jian-Hong, HU Ye-Min. Structures of Strong Shock Waves in Dense Plasmas[J]. Chin. Phys. Lett., 2007, 24(8): 059601
[13] LV Jian-Hong, HE Yong, HU Xi-Wei. Electrostatic Instabilities at High Frequency in a Plasma Shock Front[J]. Chin. Phys. Lett., 2007, 24(4): 059601
[14] HE Hong-Da, DONG Jia-Qi, ZHANG Jin-Hua, JIANG Hai-Bin. Hybrid Method for Tokamak MHD Equilibrium Configuration Reconstruction[J]. Chin. Phys. Lett., 2007, 24(2): 059601
[15] NING Cheng, DING Ning, LIU Quan, YANG Zhen-Hua, FAN Wen-Bin, ZHANG Yang. Simulation of Z-Pinch Processes of Nested Tungsten Wire-Array on Angara-5-1 Facility[J]. Chin. Phys. Lett., 2006, 23(7): 059601
Viewed
Full text


Abstract