Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 059101    DOI: 10.1088/0256-307X/28/5/059101
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS |
Electrical Properties of Hydrous Forsterite Derived from First-Principles Calculations
WANG Duo-Jun1**, LIU Zai-Yang1, YI Li2, SHI Bao-Ping1
1Key Laboratory of Computational Geodynamics, Graduate University, Chinese Academy of Sciences, Beijing 100049
2Institute of Earthquake Science, China Earthquake Administration, Beijing 100039
Cite this article:   
WANG Duo-Jun, LIU Zai-Yang, YI Li et al  2011 Chin. Phys. Lett. 28 059101
Download: PDF(597KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate electrical properties of anhydrous and hydrous forsterite crystal with 3.2 wt% water by using first-principles calculations. The calculation results indicate that the pressure weakly affects the electrical properties of anhydrous forsterite. Two types of defect configurations involving the two hydrogen atoms in different positions are considered. Type 1 involves the entrapment of two hydrogen atoms in a Mg vacancy, which demonstrates little effect on the electronic density of states (DoS) of the forsterite crystal. Type 2 corresponds to the replacement of one hydrogen atom into the Mg vacancy with the other one located in different orientations (free proton model). It is this configuration that can significantly change the DoS of the forsterite crystal. The gap energy of the free proton model derived at different orientations is in the range of 0.693–1.007 eV.
Keywords: 91.60.Gf      91.60.Pn      91.60.Ed     
Received: 06 December 2010      Published: 26 April 2011
PACS:  91.60.Gf (High-pressure behavior)  
  91.60.Pn (Magnetic and electrical properties)  
  91.60.Ed (Crystal structure and defects, microstructure)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/059101       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/059101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Duo-Jun
LIU Zai-Yang
YI Li
SHI Bao-Ping
[1] Bai Q and Kohlstedt D L 1992 Nature 357 672
[2] Bell D R and Rossman G R 1992 Science 255 1391
[3] Wang D, Mookherjee M, Xu Y and Karato S 2006 Nature 443 977
[4] Huang X, Xu Y and Karato S 2005 Nature 434 746
[5] Wright K 2006 Rev. Mineral. Geochem. 62 67
[6] Clark S J, M D Segall et al 2005 Z. Kristallogr. 220 567
[7] Sprik M, Hutter J and Parrinello M 1996 J. Chem. Phys. 105 1142
[8] Liu L, Du J, Zhao J, Liu H, Gao H and Chen Y 2009 Phys. Earth Planet. Inter. 176 89
[9] Kirfel A, Lippmann T and Blaha P 2005 Phys. Chem. Miner. 32 301
[10] Hazen R M 1976 Am. Miner. 61 1280
[11] Brodholt J, Patel A and Refson K 1996 Am. Miner. 81 257
[12] Kudoh Y, Kuribayashi T, Kagi H and Inoue T 2006 J. Miner. Petrol. Sci. 101 265
[13] Du Frane W L, Roberts J J, Toffelmier D A and Tyburczy J A 2005 Geophys. Res. Lett. 32
Related articles from Frontiers Journals
[1] FAN Da-Wei**, WEI Shu-Yi, LIU Jing, LI Yan-Chun, XIE Hong-Sen . High Pressure X-Ray Diffraction Study of a Grossular–Andradite Solid Solution and the Bulk Modulus Variation along this Solid Solution[J]. Chin. Phys. Lett., 2011, 28(7): 059101
[2] WANG Hua, ZHANG Jian, YANG Fan, WANG Kai, SHEN Si-Le**, LIU Bing-Bing, ZOU Bo**, ZOU Guang-Tian . Analysis on the DNA Fingerprinting of Aspergillus Oryzae Mutant Induced by High Hydrostatic Pressure[J]. Chin. Phys. Lett., 2011, 28(1): 059101
[3] HE Man-Chao, FANG Zhi-Jie, ZHANG Ping. Theoretical Studies on Defects of Kaolinite in Clays[J]. Chin. Phys. Lett., 2009, 26(5): 059101
[4] LU Lai-Yu, WEI Dong-Qing, CHEN Xiang-Rong, JI Guang-Fu. First-Principles Calculations of Structures and Electronic Properties of Solid Pentaerythritol under Pressure[J]. Chin. Phys. Lett., 2008, 25(9): 059101
[5] ZHANG Hong, TANG Jin, CHENG Xin-Lu. Structural, Electronic Properties and Chemical Bonding of Borate Li4CaB2O6 under High Pressure: an Ab Initio Investigation[J]. Chin. Phys. Lett., 2008, 25(2): 059101
[6] HUANG Dai-Hui, LIU Xiu-Ru, SU Lei, HU Yun, LV Shi-Jie, LIU Hai-Long, HONG Shi-Ming. Measuring Grüneisen Parameter of Lead by High Pressure-Jump Method[J]. Chin. Phys. Lett., 2007, 24(8): 059101
[7] ZHANG Dai-Yu, LIU Fu-Sheng, HAO Gao-Yu, SUN Yu-Huai. Shock Induced Emission from Sapphire in High-Pressure Phase of Rh2O3 (II) Structure[J]. Chin. Phys. Lett., 2007, 24(8): 059101
[8] LI Ming, GAO Chun-Xiao, MA Yan-Zhang, HE Chun-Yuan, HAO Ai-Min, ZHANG Dong-Mei, LI Yan-Chun, LIU Jing, WANG Duo-Jun. Resistivity Measurement of Molten Olivine in a Laser-Heated Diamond[J]. Chin. Phys. Lett., 2007, 24(4): 059101
[9] ZHANG Wang, YAO Li-De, YOU Shu-Jie, YANG Liu-Xiang, YANG Hua, LI Feng-Ying, CHEN Liang-Chen, BAO Zhong-Xing, LI Xiao-Dong, LIU Jing, JIN Chang-Qing, YU Ri-Cheng. Structural Stability of CaCuMn6O12 under High Pressure and Low Temperature[J]. Chin. Phys. Lett., 2007, 24(2): 059101
[10] LIN Ao-Lei, WANG Kai, ZHAO Yu, HAO Jian, ZOU Bo,. High-Pressure Phase Transition in CTAB-Micellar Solutions: A Raman Spectroscopic Study[J]. Chin. Phys. Lett., 2007, 24(11): 059101
[11] ZHOU Jin-Ling, CUI Tian, MA Yan-Ming, LIU Zhi-Ming, LIU Bing-Bing, ZOU Guang-Tian. Effects of High Pressure on BC3[J]. Chin. Phys. Lett., 2006, 23(9): 059101
[12] DENG Li-Wei, ZHAO Ji-Jun, JI Guang-Fu, GONG Zi-Zheng, WEI Dong-Qing,. First-Principles Study of Orthorhombic Perovskites MgSiO3 up to 120GPa and Its Geophysical Implications[J]. Chin. Phys. Lett., 2006, 23(8): 059101
[13] YI Li, WANG Duo-Jun, LI He-Ping. Electrical Properties of Natural Pyroxenite[J]. Chin. Phys. Lett., 2005, 22(8): 059101
[14] CAI Ling-Cang, CHEN Qi-Feng, CUI Shou-Xin, JING Fu-Qian. The Grüneisen Parameter of NaCl at High Pressures and Temperatures: a Molecular Dynamics Study[J]. Chin. Phys. Lett., 2005, 22(2): 059101
[15] REN Guo-Zhong, JIA Xiao-Peng, ZHU Pin-Wen, ZANG Chuan-Yi, MA Hong-An, WANG Xian-Cheng. In-Situ Measurement of Electrical Character of PbTe at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2005, 22(1): 059101
Viewed
Full text


Abstract