CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
L-cystine-Assisted Growth and Mechanism of CuInS2 Nanocrystallines via Solvothermal Process |
LIU Hai-Tao1, ZHONG Jia-Song2, LIU Bing-Feng1, LIANG Xiao-Juan1, YANG Xin-Yu1, JIN Huai-Dong1, YANG Fan1, XIANG Wei-Dong1,2**
|
1College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035
2College of Materials Science and Engineering, Tongji University, Shanghai 100092
|
|
Cite this article: |
LIU Hai-Tao, ZHONG Jia-Song, LIU Bing-Feng et al 2011 Chin. Phys. Lett. 28 057702 |
|
|
Abstract L-cystine is successfully used as a kind of sulfur source to grow CuInS2 nanocrystallines at 200°C for 18 h in a mixed solution made of 20 mL ethylenediamine and 20 mL distilled water. The diameter of the CuInS2 nanocrystallines ranges from 300 to 500 nm. The structure of nanocrystallines is determined to be of the tetragonal phase of CuInS2. A reasonable possible mechanism for the growth of CuInS2 nanocrystallines is proposed. The as−obtained CuInS2 products are examined using diverse techniques including x-ray powder diffraction, x-ray photoelectron spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, selected-area electron diffraction and high-resolution transmission electron microscopy.
|
Keywords:
77.84.-s
81.07.-b
|
|
Received: 11 February 2011
Published: 26 April 2011
|
|
PACS: |
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
81.07.-b
|
(Nanoscale materials and structures: fabrication and characterization)
|
|
|
|
|
[1] Afzaal M and O'Brien P 2006 J. Mater. Chem. 16 1597
[2] Fan P et al 2010 Chin. Phys. Lett. 27 046801
[3] Das K et al 2007 Cryst. Growth. Des. 7 1547
[4] Courtel F M et al 2010 Chem. Mater. 22 3752
[5] Nairn J J et al 2006 Nano. Lett. 6 1218
[6] Tsuji I, Kato H and Kudo A 2005 Angew. Chem. Int. Ed. 44 3565
[7] Courtel F M et al 2009 Chem. Mater. 21 3752
[8] Nyari T et al 2005 J. Cryst. Growth 275 e2383
[9] Xiao J P, Xie Y, Tang R and Qian Y T 2001 J. Solid State Chem. 161 179
[10] Wakita K, Iwai M, Miyoshi Y, Fujibuchi H and Ashida A 2005 Composites Sci and Tech 65 765
[11] Shen G Z et al 2003 J. Cryst. Growth 254 75
[12] Zhang A Y et al 2008 Cryst. Growth Des. 8 2402
[13] Lu Q Y, Gao F and Komarneni S 2004 J. Am. Chem. Soc. 126 54
[14] Zuo F et al 2008 J. Phys. Chem. C 112 2831
[15] Xiang J H et al 2008 J. Phys. Chem. C 112 3580
[16] Wu Q Z et al 2006 Inorg. Chem. 45 7316
[17] Mandal S et al 2001 Langmuir 17 6262
[18] Brelle M C et al 1999 J. Phys. Chem. A 103 10194
[19] Shi X L, Cao M S, Yuan J and Fang X Y 2009 Appl. Phys. Lett. 95 163108
[20] Shi X L, Cao, M S, Yuan J, Zhao Q L, Kang Y Q, Fang X Y and Chen, Y J 2008 Appl. Phys. Lett. 93 183118
[21] Shi X L et al 2008 Appl. Phys. Lett. 93 223112
[22] Wagner C D, Riggs W M, Davis L E, Moulder J F and Muilenberg G E 1978 Handbook of X-Ray Photoelectron Spectroscopy (Eden Prairie, MN: Perkin-Elmer Corp)
[23] Han S K, Kong M G, Guo Y and Wang M T 2009 Mater. Lett. 63 1192
[24] Ohsaku M and Allinger N L 1988 J. Phys. Chem. 92 4591
[25] Ma Z F and Han H L 2008 Colloids Surf. A 317 229
[26] Gorai S et al 2005 Mater. Lett. 59 3535
[27] Phuruangrat A, Thongtem T and Thongtem S 2009 Mater. Lett. 63 1538
[28] Cheng J et al 2010 Chin. Phys. Lett. 27 057302
[29] Xu H et al 2010 Chin. Phys. Lett. 27 058103
[30] Chen Z X et al 2009 Cryst. Growth Des. 9 1327
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|