CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Thermal Decay and Reversal of Exchange Bias Field of CoFe/PtMn Bilayer after Ga+ Irradiation |
ZHOU Guang-Hong1,2**, ZHU Yu-Fu1, LIN Yue-Bin1
|
1Jiangsu Provincial Key Laboratory for Interventional Medical Devices, Huaiyin Institute of Technology, Huaian 223003
2Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
|
|
Cite this article: |
ZHOU Guang-Hong, ZHU Yu-Fu, LIN Yue-Bin 2011 Chin. Phys. Lett. 28 057502 |
|
|
Abstract An applied field is used to perform Ga+ ion irradiation on a CoFe/PtMn bilayer. Effects of the applied field and energy transfer between Ga+ ions and antiferromagnetic (AFM) atoms on the exchange bias field H ex are investigated. A partially reversed Hex is found in CoFe/PtMn specimens irradiated at a dose of 1×1014 ions/cm2 with an applied field anti−parallel to the original exchange bias direction. We believe that the rapid energy transfer and local temperature increase originating from the interaction between Ga+ ions and AFM atoms result in spin reversal and the formation of reversed AFM domains when specimens are irradiated with anti−parallel fields. The decrease in H ex when annealing the film in a negative saturation field indicates a thermal decay process. The AFM moments are reversed by thermal activation over an energy barrier distribution, which may change in some way as the temperature increases.
|
Keywords:
75.70.Cn
61.80.Jh
|
|
Received: 12 October 2010
Published: 26 April 2011
|
|
PACS: |
75.70.Cn
|
(Magnetic properties of interfaces (multilayers, superlattices, heterostructures))
|
|
61.80.Jh
|
(Ion radiation effects)
|
|
|
|
|
[1] Fassbender J, Ravelosona D and Samson Y 2004 J. Phys. D: Appl. Phys. 37 R179
[2] Fa T, Xiang Q P and Yao S D 2009 Chin. Phys. Lett. 26 126101
[3] Ozkaya L D, Langford R M, Chan W L and Petford-Long A K 2002 J. Appl. Phys. 91 9937
[4] Kaminsky W M, Jones G A C, Patel N K, Booij W E, Blamire M G, Gardiner S M, Xu Y B and Bland J A C 2001 Appl. Phys. Lett. 78 1589
[5] Woods S I, Ingvarsson S, Kirtley J R, Hamann H F and Koch R H 2002 Appl. Phys. Lett. 81 1267
[6] Chappert C, Bernas H, Ferré J, Kottler V, Jamet J P, Chen Y, Cambril E, Devolder T, Rousseaux F, Mathet V and Launois H 1998 Science 280 1919
[7] Hyndman R, Warin P, Gierak J, Ferré J, Chapman J N, Jamet J P, Mathet V and Chapert C 2001 J. Appl. Phys. 90 3843
[8] Mougin A, Mewes T, Jung M, Engel D, Ehresmann A, Schmoranzer H, Fassbender J and Hillebrands B 2001 Phys. Rev. B 63 060409
[9] Devolder T, Chappert C, Chen Y, Cambril E, Bernas H, Jamet J P and Ferré J 1999 Appl. Phys. Lett. 74 3383
[10] Gierak J, Bourhis E, Mérat Combes M N, Chriqui Y, Sagnes I, Mailly D, Hawkes P, Jede R, Bruchhaus L, Bardotti L, Prével B, Hannour A, Mélinon P, Perez A, Ferré J, Jamet J P, Mougin A, Chappert C and Mathet V 2005 Microelectron. Eng. 78–79 266
[11] McGrouther D, Chapman J N and Vanhelmont F W M 2004 J. Appl. Phys. 95 7772
[12] Meiklejohn W H and Bean C P 1956 Phys. Rev. 102 1413
[13] Ziegler J F 2004 Nucl. Instrum. Methods Phys. Res. B 219–220 1027
[14] Naguib H M, Singleton J F, Grant W A and Carter G 1973 J. Mater. Sci. 8 1633
[15] Gabutti A 1995 Phys. Rev. B 51 8374
[16] Volkov A E and Borodin V A 2002 Nucl. Instrum. Methods Phys. Res. B 193 381
[17] Rickart M, Guedes A, Franco N, Barradas N P, Diaz P, MacKenzie M, Chapman J N and Freitas P P 2005 J. Phys. D: Appl. Phys. 38 2151
[18] Goodman A M, Laidler H, O'Grady K, Owen N W and Petford-Long A K 2000 J. Appl. Phys. 87 6409
[19] Nishioka K 1999 J. Appl. Phys. 86 6305
[20] Stamps R L 2000 Phys. Rev. B 61 12174
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|