Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 057401    DOI: 10.1088/0256-307X/28/5/057401
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Growth, Characterization and Fermi Surface of Heavy Fermion CeCoIn5 Superconductor
JIA Xiao-Wen1, LIU Yan1, YU Li1, HE Jun-Feng1, ZHAO Lin1, ZHANG Wen-Tao1, LIU Hai-Yun1, LIU Guo-Dong1, HE Shao-Long1, ZHANG Jun1, LU Wei1, WU Yue1, DONG Xiao-Li1, SUN Li-Ling1, WANG Gui-Ling2, ZHU Yong2, WANG Xiao-Yang2, PENG Qin-Jun2, WANG Zhi-Min2, ZHANG Shen-Jin2, YANG Feng2, XU Zu-Yan2, CHEN Chuang-Tian2, ZHOU Xing-Jiang1**
1National Lab for Superconductivity, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190
2Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190
Cite this article:   
JIA Xiao-Wen, LIU Yan, YU Li et al  2011 Chin. Phys. Lett. 28 057401
Download: PDF(873KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract High quality single crystals of heavy Fermion CeCoIn5 superconductor have been grown by flux method with a typical size of (12)×(1−2)×(∼0.1) mm3. The single crystals are characterized by structural analysis from x−ray diffraction and Laue diffraction, as well as compositional analysis. Magnetic and electrical measurements on the single crystals show a sharp superconducting transition with a transition temperature at Tc,onset∼2.3 K and a transition width of 0.15 K. The resistivity of the CeCoIn5 crystal exhibits a hump at 45 K, which is typical of a heavy Fermion system. High resolution angle−resolved photoemission spectroscopy (ARPES) measurements of CeCoIn5 reveal clear Fermi surface sheets that are consistent with the band structure calculations when assuming itinerant Ce 4f electrons at low temperature. This work provides important information on the electronic structure of heavy Fermion CeCoIn5 superconductor. It also lays a foundation for further studies on the physical properties and superconducting mechanism of the heavy Fermion superconductors.
Keywords: 74.70.-b      74.25.Jb      79.60.-i      71.20.-b     
Received: 20 January 2011      Published: 26 April 2011
PACS:  74.70.-b (Superconducting materials other than cuprates)  
  74.25.Jb (Electronic structure (photoemission, etc.))  
  79.60.-i (Photoemission and photoelectron spectra)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/057401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/057401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIA Xiao-Wen
LIU Yan
YU Li
HE Jun-Feng
ZHAO Lin
ZHANG Wen-Tao
LIU Hai-Yun
LIU Guo-Dong
HE Shao-Long
ZHANG Jun
LU Wei
WU Yue
DONG Xiao-Li
SUN Li-Ling
WANG Gui-Ling
ZHU Yong
WANG Xiao-Yang
PENG Qin-Jun
WANG Zhi-Min
ZHANG Shen-Jin
YANG Feng
XU Zu-Yan
CHEN Chuang-Tian
ZHOU Xing-Jiang
[1] Fisk Z et al 1986 Nature 320 124
[2] Stewart G R et al 2001 Rev. Mod. Phys. 73 797
[3] Steglich F et al 1979 Phys. Rev. Lett. 43 1892
[4] Fisher R A et al 1989 Phys. Rev. Lett. 62 1411
[5] Ott H R et al 1983 Phys. Rev. Lett. 50 1595
[6] Geibel C et al 1991 Z. Phys. B 84 1
[7] Geibel C et al 1991 Z. Phys. B 83 305
[8] Petrovic C et al 2001 J. Phys. Condens. Matt. 13 L337
[9] Seaman C L et al 1991 Phys. Rev. Lett. 67 2882
[10] Amato A et al 1997 Rev. Mod. Phys. 69 1119
[11] Yang Y F et al 2008 Phys. Rev. Lett. 100 096404
[12] Onuki Y et al 2008 J. Cryst. Growth 310 1859
[13] Bardeen J, Cooper R and Schriffer J R 1957 Phys. Rev. 108 1175
[14] Thomson J D et al 2001 J. Magn. Magn. Mater. 226–230 5
[15] Park T et al 2006 Nature 440 65
[16] Moshopolow E G et al 2002 Appl. Phys. A 74 S895
[17] Ott H R et al 2000 Phys. Rev. Lett. 84 4986
[18] Izawa K et al 2001 Phys. Rev. Lett. 87 057002
[19] Aoki H et al 2004 J. Phys.: Condens. Matter 16 L13
[20] Bianchi A et al 2003 Phys. Rev. Lett. 91 257001
[21] Bianchi A et al 2003 Phys. Rev. Lett. 91 187004
[22] Damascelli A et al 2003 Rev. Mod. Phys. 75 473
[23] Park W K et al 2007 Physica C 460 206
[24] Normile P S et al 2005 Phys. Rev. B 72 184508
[25] Curro N J et al 2005 Nature 434 622
[26] Koitzsch A et al 2008 Phys. Rev. B 77 155128
[27] Koitzsch A et al 2009 Phys. Rev. B 79 075104
[28] Liu G D et al 2008 Rev. Sci. Instrum. 79 023105
[29] Blaha P et al 1990 Comput. Phys. Commun. 59 399
Related articles from Frontiers Journals
[1] LIU Shan-Yu, ZHANG Wen-Tao, WENG Hong-Ming, ZHAO Lin, LIU Hai-Yun, JIA Xiao-Wen, LIU Guo-Dong, DONG Xiao-Li, ZHANG Jun, MAO Zhi-Qiang, CHEN Chuang-Tian, XU Zu-Yan, DAI Xi, FANG Zhong, ZHOU Xing-Jiang. Effect of Cleaving Temperature on the Surface and Bulk Fermi Surface of Sr2RuO4 Investigated by High Resolution Angle-Resolved Photoemission[J]. Chin. Phys. Lett., 2012, 29(6): 057401
[2] ZHOU Tie-Ge,LIU Zhi-Qiang**,ZUO Xu. First-Principles Study of Doped Half-Metallic Spinels: Cu0.5Zn0.5Cr2S4, Cu0.5Cd0.5Cr2S4, Li0.5Zn0.5Cr2O4 and Li0.5Zn0.5Cr2S4[J]. Chin. Phys. Lett., 2012, 29(4): 057401
[3] BAO Wei**, HUANG Qing-Zhen, CHEN Gen-Fu, M. A. Green, WANG Du-Ming, HE Jun-Bao, QIU Yi-Ming, . A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor[J]. Chin. Phys. Lett., 2011, 28(8): 057401
[4] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 057401
[5] CAO Chao**, DAI Jian-Hui, ** . Electronic Structure of KFe2Se2 from First-Principles Calculations[J]. Chin. Phys. Lett., 2011, 28(5): 057401
[6] JIANG Jiu-Xing, **, JIN Shan, WANG Zhen-Hua, TAN Chang-Long . Electronic Structure and Optical Properties of Layered Ternary Carbide Ti3AlC2[J]. Chin. Phys. Lett., 2011, 28(3): 057401
[7] CHENG Fang, LIU Ting-Yu**, ZHANG Qi-Ren, QIAO Hai-Ling, ZHOU Xiu-Wen . Computer Simulation of the Electronic Structures and Absorption Spectra for a KMgF3 Crystal Containing a Potassium Vacancy[J]. Chin. Phys. Lett., 2011, 28(3): 057401
[8] BAI Li-Na, LIAN Jian-She**, JIANG Qing . Optical and Electronic Properties of Wurtzite Structure Zn1−xMgxO Alloys[J]. Chin. Phys. Lett., 2011, 28(11): 057401
[9] WEI Hong-Yuan, XIONG Xiao-Ling, SONG Hong-Tao, LUO Shun-Zhong. A Density Functional Study of Atomic Carbon Adsorption on δ-Pu(111) Surface[J]. Chin. Phys. Lett., 2010, 27(9): 057401
[10] DAI Jun, LI Zhen-Yu, YANG Jin-Long. Electron-phonon Coupling in Gallium-Doped Germanium[J]. Chin. Phys. Lett., 2010, 27(8): 057401
[11] ZHAO Lin, ZHANG Wen-Tao, LIU Hai-Yun, MENG Jian-Qiao, LIU Guo-Dong, LU Wei, DONG Xiao-Li, ZHOU Xing-Jiang. High-Quality Large-Sized Single Crystals of Pb-Doped Bi2Sr2CuO6+δ High-Tc Superconductors Grown with Traveling Solvent Floating Zone Method[J]. Chin. Phys. Lett., 2010, 27(8): 057401
[12] GAO Hui, SUN Xun, LIU Bao-An, XU Ming-Xia, HU Guo-Hang, XU Xin-Guang, ZHAO Xian. Effect of S Substitution for P Point Defects in KDP Crystals: First-Principles Study[J]. Chin. Phys. Lett., 2010, 27(7): 057401
[13] PI Wei, WANG Yin-Shun, DONG Jin, CHEN Lei. AC Alternating-Current Loss Analyses of a Thin High-Temperature Superconducting Tube Carrying AC Transport Current in AC External Magnetic Field[J]. Chin. Phys. Lett., 2010, 27(3): 057401
[14] Can the Fullerene C0 Encage the Tetrahedral Td-N? A Density Functional Study. Can the Fullerene C80 Encage the Tetrahedral Td-N4? A Density Functional Study[J]. Chin. Phys. Lett., 2009, 26(9): 057401
[15] DU Gong-He, REN Zhao-Yu, GUO Ping, ZHENG Ji-Ming. Halopentacenes: Promising Candidates for Organic Semiconductors[J]. Chin. Phys. Lett., 2009, 26(7): 057401
Viewed
Full text


Abstract