CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A Trade-off between Propagation Length and Light Confinement in Cylindrical Metal-Dielectric Waveguides |
SUN Bao-Qing, GU Ying**, HU Xiao-Yong, GONG Qi-Huang**
|
State Key Laboratory for Mesoscopic Physics, Department of Physics, Peking University, Beijing 100871
|
|
Cite this article: |
SUN Bao-Qing, GU Ying, HU Xiao-Yong et al 2011 Chin. Phys. Lett. 28 057303 |
|
|
Abstract We theoretically investigate the hybrid plasmonic modes of cylindrical nanocables with gold nanocore and two dielectric nanolayers (SiO2 and BN). By solving a complete set of Maxwell's equations, the propagation constants and effective radii depending on geometrical parameters are numerically calculated. By declining a trade−off between propagation length and light confinement, high quality hybrid modes which can travel a long range of 120–200λ with a subwavelength effective radius are obtained at the optical wavelength. These modes in one-dimensional cylindrical waveguides should have potential applications in nanoscale optical device designs.
|
Keywords:
73.20.Mf
78.67.-n
|
|
Received: 17 April 2010
Published: 26 April 2011
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
|
|
|
[1] Raether H 1988 Surface Plasmons (Berlin: Springer-Verlag)
[2] Barnes W L et al 2003 Nature 424 824
[3] Economou E N 1969 Phys. Rev. 182 539
[4] Sarid D 1981 Phys. Rev. Lett. 47 1927
[5] Charbonneau R et al 2000 Opt. Lett. 25 844
[6] Lamprecht B et al 2001 App. Phys. Lett. 79 51
[7] Zia R, Selker M D et al 2005 Phys. Rev. B 71 165431
[8] Degiron A et al 2008 Phys. Rev. A 77 021804(R)
[9] Dionne J A et al 2006 Phys. Rev . B 73 035407
[10] Guo J and Adato R 2006 Opt. Express 14 12409
[11] Bozhevolnyi S B, Volkov V S, Devaux E and Ebbesen T W 2005 Phys. Rev. Lett. 95 046802
[12] Pile D F P and Gramotnev D K 2004 Opt. Lett. 29 1069
[13] Novikov I V and Maradudin A A 2002 Phys. Rev. B 66 035403
[14] Maier S A et al 2005 Appl. Phys. Lett. 86 071103
[15] Miziumski C 1972 Phys. Lett. A 40 187
[16] Peeiffer C A and Economou E N 1974 Phys. Rev. B 10 3038
[17] Prade B and Vinet J Y 1994 J. Lighwave Technol. 12 6
[18] Schroter U and Dereux A 2001 Phys. Rev. B 64 125420
[19] Novotny L and Hafner C 1994 Phys. Rev. E 50 4094
[20] Yang P F, Gu Y and Gong Q H 2008 Chin. Phys. B 17 3880
[21] Maier S A 2008 Nature Photon. 2 460
[22] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nature Photon. 2 496
[23] Stratton J A 1941 Electromagnetic Theory (New York: McGraw-Hill)
[24] Palik E D 1985 Handbook of Optical Constants of Solids (Orlando: Academic)
[25] Snyder A W, Love J D 1983 Optical Waveguide Theory (New York: Chapman and Hall)
[26] Lide D R 2005–2006 CRC Handbook of Chemistry and Physics 86th edn (Florida: Taylor & Francis)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|