CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Pure Electric and Pure Magnetic Resonances in Near-Infrared Metal Double-Triangle Metamaterial Arrays |
CAO Zhi-Shen, PAN Jian, CHEN Zhuo, ZHAN Peng , MIN Nai-Ben, WANG Zhen-Lin**
|
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093
|
|
Cite this article: |
CAO Zhi-Shen, PAN Jian, CHEN Zhuo et al 2011 Chin. Phys. Lett. 28 057302 |
|
|
Abstract We experimentally and numerically investigate the optical properties of metamaterial arrays composed of double partially-overlapped metallic nanotriangles fabricated by an angle-resolved nanosphere lithography. We demonstrate that each double-triangle can be viewed as an artificial magnetic element analogous to the conventional metal split-ring-resonator. It is shown that under normal-incidence conditions, individual double-triangle can exhibit a strong local magnetic resonance, but the collective response of the metamaterial arrays is purely electric because magnetic resonances of the two double-triangles in a unit cell having opposite openings are out of phase. For oblique incidences the metamaterial arrays are shown to support a pure magnetic response at the same frequency band. Therefore, switchable electric and magnetic resonances are achieved in double-triangle arrays. Moreover, both the electric and magnetic resonances are shown to allow for a tunability over a large spectral range down to near-infrared.
|
Keywords:
73.20.Mf
78.67.-n
81.16.-c
|
|
Received: 17 March 2011
Published: 26 April 2011
|
|
PACS: |
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
81.16.-c
|
(Methods of micro- and nanofabrication and processing)
|
|
|
|
|
[1] Pendry J B, Holden A J, Robbins D J and Stewart W J 1999 IEEE Trans. Microwave Theor. Tech. 47 2075
[2] Linden S et al 2004 Science 306 1351
[3] Yen T J et al 2004 Science 303 1494
[4] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[5] Smith D R et al 2000 Phys. Rev. Lett. 84 4184
[6] Shelby R A et al 2001 Science 292 77
[7] Zhang S et al 2005 Phys. Rev. Lett. 95 137404
[8] Pendry J B et al 2006 Science 312 1780
[9] Liu R, Ji C et al 2009 Science 323 366
[10] Rogacheva A V et al 2006 Phys. Rev. Lett. 97 177401
[11] Zhang S et al 2009 Phys. Rev. Lett. 102 023901
[12] Katsarakis N et al 2005 Opt. Lett. 30 1348
[13] Enkrich C et al 2005 Phys. Rev. Lett. 95 203901
[14] Zhou J et al 2005 Phys. Rev. Lett. 95 223902
[15] Klein M W et al 2006 Opt. Lett. 31 1259
[16] Enkrich C et al 2005 Adv. Mater. 17 2547
[17] Burckel D B et al 2010 Adv. Mater. 22 3171
[18] Padilla W J et al 2006 Phys. Rev. Lett. 96 107401
[19] Marqués R et al 2002 Phys. Rev. B 65 144440
[20] Schurig D et al 2006 Appl. Phys. Lett. 88 041109
[21] Padilla W et al 2007 Phys. Rev. B 75 041102(R)
[22] Feth N et al 2010 Opt. Express 18 6545
[23] Chen H T et al 2006 Nature 444 597
[24] Chen H T et al 2008 Nature Photon. 2 295
[25] Driscoll T et al 2009 Science 325 1518
[26] Xiong X et al 2009 Phys. Rev. B 80 201105(R)
[27] Haynes C L et al 2001 J. Phys. Chem. B 105 5599
[28] Kosiorek A et al 2005 Small 1 439
[29] Gwinner M C et al 2009 Small 5 400
[30] Retsch M et al 2009 Small 5 2105
[31] Sun J, Tang C J et al 2010 Langmuir 26 7859
[32] Ordal M A, Long L L et al 1983 Appl. Opt. 22 1099
[33] Zhou J et al 2007 Opt. Express 15 17881
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|