Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 054703    DOI: 10.1088/0256-307X/28/5/054703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Transient Growth of Perturbation Energy in the Taylor–Couette Problem with Radial Flow
CHEN Cheng, GUO Zhi-Wei, WANG Bo-Fu, SUN De-Jun**
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027
Cite this article:   
CHEN Cheng, GUO Zhi-Wei, WANG Bo-Fu et al  2011 Chin. Phys. Lett. 28 054703
Download: PDF(729KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Transient growth of perturbation energy in the Taylor–Couette problem with radial flow is investigated. The effects of radial flow on transient growth and structure of the optimal perturbation are mainly considered. For the wide gap case, strong radial flow, either inward or outward, shifts the peak of the amplitude of optimal perturbation towards the outer cylinder and the lift-up mechanism cannot be observed. However, for the narrow gap case, the optimal perturbation is almost unaffected by the radial flow and the lift-up mechanism still exists.
Keywords: 47.20.Qr      47.32.Ef     
Received: 22 December 2010      Published: 26 April 2011
PACS:  47.20.Qr (Centrifugal instabilities (e.g., Taylor-Couette flow))  
  47.32.Ef (Rotating and swirling flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/054703       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/054703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Cheng
GUO Zhi-Wei
WANG Bo-Fu
SUN De-Jun
[1] Taylor G I 1923 Philos. Trans. R. Soc. London A 223 289
[2] Chossat P and Iooss G 1994 The Couette-Taylor Problem (New York: Springer-Verlag)
[3] Tagg R 1994 Nonlinear Sci. Today 4 1
[4] Coles D 1965 J. Fluid Mech. 21 385
[5] Atta C V 1966 J. Fluid Mech. 25 495
[6] Hegseth J J andereck D D, Hayot F and Pomeau Y 1989 Phys. Rev. Lett. 62 257
[7] Hristova H, Roch S, Schmid P J and Tuckerman L S 2002 Phys. Fluids 14 3475
[8] Hristova H, Roch S, Schmid P J and Tuckerman L S 2002 Theoret. Comput. Fluid Dynamics 16 43
[9] Meseguer A 2002 Phys. Fluids 14 1655
[10] DiPrima R C 1960 J. Fluid Mech. 9 621
[11] Chang K C and Astill K N 1977 J. Fluid Mech. 81 641
[12] Gallet B, Doering C R and Spiegel E A 2010 Phys. Fluids 22 034105
[13] Lueptow R M and Hajiloo A 1995 Am. Soc. Artif. Int. Organs J. 41 182
[14] Wakeman R J and Williams C J 2002 Sep. Purif. Technol. 26 3
[15] Min K and Lueptow R M 1994 Phys. Fluids 6 144
[16] Johnson E C and Lueptow R M 1997 Phys. Fluids 9 3687
[17] Serre E, Sprague M A and Lueptow R M 2008 Phys. Fluids 20 034106
[18] Bahl S K 1970 Def. Sci. J. 20 89
[19] Schmid P J and Henningson D S 2001 Stability and Transition in Shear Flows (New York: Springer-Verlag)
Related articles from Frontiers Journals
[1] TAO Jian-Jun, TAN Wen-Chang. Relaxation Oscillation of Thermal Convection in Rotating Cylindrical Annulus[J]. Chin. Phys. Lett., 2010, 27(3): 054703
[2] FENG Shun-Xin, FU Song. Influence of Orbital Motion of Inner Cylinder on Eccentric Taylor Vortex Flow of Newtonian and Power-Law Fluids[J]. Chin. Phys. Lett., 2007, 24(3): 054703
Viewed
Full text


Abstract