Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 054701    DOI: 10.1088/0256-307X/28/5/054701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Exact Solutions on MHD Flow Past an Accelerated Porous Plate in a Rotating Frame
T. Hayat1,2, Liaqat Ali. Khan3, R. Ellahi4**, S. Obaidat2
1Department of Mathematics Quaid-i-Azam University Islamabad, Pakistan
2Department of Mathematics, King Saud University, Riyadh, Saudi Arabia
3Department of Mathematics, Military College Murree, Pakistan
4Department of Mathematics, FBAS, IIUI, H-10 Sector, Pakistan
Cite this article:   
T. Hayat, Liaqat Ali. Khan, R. Ellahi et al  2011 Chin. Phys. Lett. 28 054701
Download: PDF(464KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We present an analysis of an electrically conducting viscous fluid over a porous plate in a rotating system. The plate starts impulsively from rest relative to the rotating fluid moving with uniform acceleration in its own plane. Exact solutions are developed for both large and small times. In addition, skin friction is computed. The variations of magnetic field and porosity are displayed and discussed. It is noted that steady state behavior is not achieved even under the simultaneous effects of suction, magnetic field and rotation.
Keywords: 47.50.-d     
Received: 16 August 2010      Published: 26 April 2011
PACS:  47.50.-d (Non-Newtonian fluid flows)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/054701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/054701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
T. Hayat
Liaqat Ali. Khan
R. Ellahi
S. Obaidat
[1] Debnath L 1973 Acta Mech. 18 333
[2] Debnath L 1974 Phys. Fluids 17 1704
[3] Debnath L 1975 Z. Angew Math. Mech. 55 141
[4] Debnath L and Mukherjee 1973 Phys. Fluids 16 1418
[5] Hayat T, Mumtaz S and Ellahi R 2003 Acta Mech. Sin. 19 235
[6] Hayat T, Ellahi R, Asghar S and Siddiqui AM 2004 Applied Mathematical Modeling 28 591
[7] Hayat T, Ellahi R and Asghar S 2004 Math. Comput. Modelling 40 173
[8] Hayat T, Ellahi R and Asghar S 2007 Chem. Engin. Commun. 194 37
[9] Nadeem S 2006 J. Porous Media 8 779
[10] Hameed M and Nadeem S 2007 J. Math. Anal. Appl. 325 724
[11] Fetecau C and Fetecau C 2005 Int. J. Eng. Sci. 43 781
[12] Abelman S, Momoniat E and Hayat T 2009 Nonlin. Anal. Ser. B: Real World Problems 10 3322
[13] Deka R K, Gupta A S, Takhar H S and Soundalgekar V M 1999 Acta Mech. 138 13
[14] Deka RK 2008 Theor. Appl. Mech. 35 333
[15] Debnath L 1975 Z. Angew Math. Mech. 55 431
[16] Gupta A S and Soundalgekar V M 1975 Z. Angew Math. Mech. 55 762
[17] Chen Y and Zhu K 2008 J. Non-Newtonian Fluid Mech. 153 1
Related articles from Frontiers Journals
[1] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 054701
[2] T. Hayat, M. Mustafa**, S. Obaidat . Simultaneous Effects of MHD and Thermal Radiation on the Mixed Convection Stagnation-Point Flow of a Power-Law Fluid[J]. Chin. Phys. Lett., 2011, 28(7): 054701
[3] T. Hayat, **, F. M. Abbasi, Awatif A. Hendi . Heat Transfer Analysis for Peristaltic Mechanism in Variable Viscosity Fluid[J]. Chin. Phys. Lett., 2011, 28(4): 054701
[4] Tasawar Hayat, **, Najma Saleem, Awatif A. Hendi . A Mathematical Model for Studying the Slip Effect on Peristaltic Motion with Heat and Mass Transfer[J]. Chin. Phys. Lett., 2011, 28(3): 054701
[5] N. Ali**, M. Sajid, T. Javed, Z. Abbas . An Analysis of Peristaltic Flow of a Micropolar Fluid in a Curved Channel[J]. Chin. Phys. Lett., 2011, 28(1): 054701
[6] S. Nadeem, Naeem Faraz. Thin Film Flow of a Second Grade Fluid over a Stretching/Shrinking Sheet with Variable Temperature-Dependent Viscosity[J]. Chin. Phys. Lett., 2010, 27(3): 054701
[7] YANG Fan, ZHU Ke-Qin. Generalized Lorenz Equation Derived from Thermal Convection of Viscoelastic Fluids in a Loop[J]. Chin. Phys. Lett., 2010, 27(3): 054701
[8] M. Sajid, N. Ali, T. Javed, Z. Abbas. Stretching a Curved Surface in a Viscous Fluid[J]. Chin. Phys. Lett., 2010, 27(2): 054701
[9] YANG Fan, ZHU Ke-Qin. Can We Obtain a Fractional Lorenz System from a Physical Problem?[J]. Chin. Phys. Lett., 2010, 27(12): 054701
[10] K. Fakhar, XU Zhen-Li, CHENG Yi. Hall Effects on Unsteady Magnetohydrodynamic Flow of a Third Grade Fluid[J]. Chin. Phys. Lett., 2007, 24(5): 054701
[11] FENG Shun-Xin, FU Song. Influence of Orbital Motion of Inner Cylinder on Eccentric Taylor Vortex Flow of Newtonian and Power-Law Fluids[J]. Chin. Phys. Lett., 2007, 24(3): 054701
Viewed
Full text


Abstract