Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050601    DOI: 10.1088/0256-307X/28/5/050601
GENERAL |
On Group Phase Quantization and Its Physical Characteristics
DU Bao-Qiang1,2, ZHOU Wei1, YU Jian-Guo1, DONG Shao-Feng1
1Department of Measurement and Instrument, Xidian University, Xi'an 710071
2Department of Information Engineering, Henan Vocational and Technical College, Zhengzhou 450046
Cite this article:   
DU Bao-Qiang, ZHOU Wei, YU Jian-Guo et al  2011 Chin. Phys. Lett. 28 050601
Download: PDF(457KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The physical characteristics of phase quantum are further revealed, based on the proposition of concepts of the greatest common factor frequency, the least common multiple period, quantized phase shift resolution and equivalent phase comparison frequency. Then the problem of phase comparison between different frequency signals is certified in detail. Using the basic principle of phase comparison between different frequencies and the variation law of group phase difference, a point of view on group phase quantization is presented. Group phase quantum is not only an indivisible individual of group phase, but also a basic unit composing group phase difference. It is equal to the equivalent phase comparison period of phase comparison between different frequencies in size. Experimental results show not only a high measurement resolution of 10−12/s in frequency measurement based on group phase quantum, but also a super-high locked phase precision of 10−13/s in active H atomic clock.
Keywords: 06.30.Ft      06.20.Dk     
Received: 10 September 2010      Published: 26 April 2011
PACS:  06.30.Ft (Time and frequency)  
  06.20.Dk (Measurement and error theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050601       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/050601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DU Bao-Qiang
ZHOU Wei
YU Jian-Guo
DONG Shao-Feng
[1] Du B Q, Zhou W, Dong S F and Zhou H N 2009 Chin. Phys. Lett. 26 070602
[2] Li Z Q, Zhou W and Chen F X 2010 Chin. Phys. B 19 090601
[3] Du B Q and Zhou W 2010 J. Tianjin University. 3 262 (in Chinese)
[4] Du B Q and Zhou W 2009 Chin. J. Sci. Instrum. 30 967 (in Chinese)
[5] Zhou W, Miao M and Zhou H 2009 IEEE Frequency Control Symp. 492
[6] Zhou W, Xuan Z Q and Yu J G 2004 Chin. Phys. Lett. 21 786
[7] Du B Q and Zhou W 2009 Chin. Phys. Lett. 26 100601
[8] Zhou H and Zhou W 2006 IEEE Frequency Control Symp. 267
Related articles from Frontiers Journals
[1] ZHUANG Wei, CHEN Jing-Biao** . Feasibility of Extreme Ultraviolet Active Optical Clock[J]. Chin. Phys. Lett., 2011, 28(8): 050601
[2] ZHOU Xiao-Ji, CHEN Xu-Zong, CHEN Jing-Biao, WANG Yi-Qiu, LI Jia-Ming. Microwave Atomic Clock in the Optical Lattice with Specific Frequency[J]. Chin. Phys. Lett., 2009, 26(9): 050601
[3] DU Bao-Qiang, ZHOU Wei, DONG Shao-Feng, ZHOU Hai-Niu. A Group-Period Phase Comparison Method Based on Equivalent Phase Comparison Frequency[J]. Chin. Phys. Lett., 2009, 26(7): 050601
[4] HAN Shun-Li, CHENG Bing, ZHANG Jing-Fang, XU Yun-Fei, WANG Zhao-Ying, LIN Qiang. Stabilization and Shift of Frequency in an External Cavity Diode Laser with Solenoid-Assisted Saturated Absorption[J]. Chin. Phys. Lett., 2009, 26(6): 050601
[5] QI Xiang-Hui, CHEN Wen-Lan, YI Lin, ZHOU Da-Wei, ZHOU Tong, XIAO Qin, DUAN Jun, ZHOU Xiao-Ji, CHEN Xu-Zong. Ultra-Stable Rubidium-Stabilized External-Cavity Diode Laser Based on the Modulation Transfer Spectroscopy Technique[J]. Chin. Phys. Lett., 2009, 26(4): 050601
[6] DU Bao-Qiang, ZHOU Wei. Super-High Resolution Time Interval Measurement Method Based on Time-Space Relationships[J]. Chin. Phys. Lett., 2009, 26(10): 050601
[7] LI Zhi-Qi, ZHOU Wei, MIAO Miao, ZHOU Hui, ZHENG Sheng-Feng. A Super High Resolution Distance Measurement Method Based on Phase Comparison[J]. Chin. Phys. Lett., 2008, 25(8): 050601
[8] YU De-Shui, ZHUANG Wei, CHEN Jing-Biao. Microlaser with Ramsey Separated Fields Cavity[J]. Chin. Phys. Lett., 2007, 24(6): 050601
[9] ZHANG Jian-Wei, YANG Dong-Hai. High Performance Small Optically Pumped Caesium Beam Frequency Standard[J]. Chin. Phys. Lett., 2007, 24(6): 050601
[10] LI Tian-Chu, LI Ming-Shou, LIN Ping-Wei, WANG Ping, CHEN Wei-Liang, LIU Nian-Feng, LIN Yi-Ge. Improvements and New Evaluation of NIM4 Caesium Fountain Clock at NIM in 2005--2006[J]. Chin. Phys. Lett., 2007, 24(5): 050601
[11] WU Qin-Qin, ZHOU Lan, KUANG Le-Man. Linear Optical Implementation of Quantum Clock Synchronization Algorithm[J]. Chin. Phys. Lett., 2006, 23(2): 050601
[12] PAN Shi-Long, LOU Cai-Yun. Theoretical Design of Fibre-Based Digital Autocorrelator for Completely Characterizing Ultrashort Pulses[J]. Chin. Phys. Lett., 2006, 23(2): 050601
[13] BIAN Feng-Gang, WEI Rong, JIANG Hai-Feng, WANG Yu-Zhu. A Movable-Cavity Cold Atom Space Clock[J]. Chin. Phys. Lett., 2005, 22(7): 050601
[14] KANG Zhi-Ru, FU Guang-Sheng, K. D. Hill. Equations of Propagation of Uncertainty on the ITS-90 in the Sub-ranges from 13.8033K to 933.473K[J]. Chin. Phys. Lett., 2005, 22(3): 050601
[15] ZHOU Wei, XUAN Zong-Qiang, YU Jian-Guo, WANG Hai, ZHOU Hui, LI Zhi-Qi. A Novel Frequency Measurement Method Suitable for a Large Frequency Ratio Condition[J]. Chin. Phys. Lett., 2004, 21(5): 050601
Viewed
Full text


Abstract