Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050502    DOI: 10.1088/0256-307X/28/5/050502
GENERAL |
Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control
WANG Xing-Yuan**, REN Xiao-Li
School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024
Cite this article:   
WANG Xing-Yuan, REN Xiao-Li 2011 Chin. Phys. Lett. 28 050502
Download: PDF(719KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Chaotic synchronization of two electrical coupled FitzHugh–Nagumo (FHN) neurons with unknown parameters via adaptive control is investigated. Based on the Lyapunov stability theory, an adaptive controller and a parameter update law are designed, which can achieve the synchronization of the two gap junction coupled FHN neurons when the individual neuron is chaotic, without considering the coupling strength. Moreover, the unknown parameters are identified successfully and the controller is robust to the random noise. The numerical simulation results confirm the effectiveness of the designed controller.
Keywords: 05.45.Xt      05.45.Pq      05.45.Gg     
Received: 21 May 2010      Published: 26 April 2011
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/050502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xing-Yuan
REN Xiao-Li
[1] Chay T R 1985 Physica D 16 233
[2] Glass L 1995 Chaos in Neural Systems (Cambridge: MIT) p 186
[3] Roelfsema P R, Engel A K, König P and Singer W 1997 Nature 385 157
[4] Steriade M, McCormick D A and Sejnowski T J 1993 Science 262 679
[5] Meister M, Wong R O, Baylor D A and Shatz C J 1991 Science 252 939
[6] Kreiter A K and Singer W 1996 J. Neurosci. 16 2381
[7] Bennett M V L and Verselis V K 1992 Semin. Cell. Biol. 3 29
[8] Shuai J W and Durand D M 1999 Phys. Lett. A 264 289
[9] Dhamala M, Jirsa V K and Ding M 2004 Phys. Rev. Lett. 92 074104
[10] Cornejo-Pérez O and Femat R 2005 Chaos. Soliton. Fract. 25 43
[11] Wang Q Y, Lu Q S, Chen G R and Guo D H 2006 Phys. Lett. A 356 17
[12] Wang J, Deng B and Tsang K M 2004 Chaos. Soliton. Fract. 22 469
[13] Zhou S B, Liao X F, Yu J B and Wong K W 2004 Chaos. Soliton. Fract. 21 133
[14] Meng J and Wang X Y 2007 Chaos 17 023113
[15] Wang J, Deng B and Fei X Y 2008 Chaos. Soliton. Fract. 35 512
[16] Wang X Y and Zhao Q 2010 Nonlinear Anal.-Real. 11 849
[17] Lin D and Wang X Y 2010 Neurocomputing 73 2873
[18] Zhang H G, Xie Y H, Wang Z L and Zheng C D 2007 Ieee. T. Neural. Networ. 18 1841
[19] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[20] Lasalle J and Lefschtg S 1961 Stability by Lyapunov's Direct Method with Application (New York: Academic)
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[2] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[3] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 050502
[4] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 050502
[5] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 050502
[6] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 050502
[7] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 050502
[8] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 050502
[9] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 050502
[10] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 050502
[11] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 050502
[12] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 050502
[13] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 050502
[14] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 050502
[15] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 050502
Viewed
Full text


Abstract