GENERAL |
|
|
|
|
Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control |
WANG Xing-Yuan**, REN Xiao-Li
|
School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024
|
|
Cite this article: |
WANG Xing-Yuan, REN Xiao-Li 2011 Chin. Phys. Lett. 28 050502 |
|
|
Abstract Chaotic synchronization of two electrical coupled FitzHugh–Nagumo (FHN) neurons with unknown parameters via adaptive control is investigated. Based on the Lyapunov stability theory, an adaptive controller and a parameter update law are designed, which can achieve the synchronization of the two gap junction coupled FHN neurons when the individual neuron is chaotic, without considering the coupling strength. Moreover, the unknown parameters are identified successfully and the controller is robust to the random noise. The numerical simulation results confirm the effectiveness of the designed controller.
|
Keywords:
05.45.Xt
05.45.Pq
05.45.Gg
|
|
Received: 21 May 2010
Published: 26 April 2011
|
|
PACS: |
05.45.Xt
|
(Synchronization; coupled oscillators)
|
|
05.45.Pq
|
(Numerical simulations of chaotic systems)
|
|
05.45.Gg
|
(Control of chaos, applications of chaos)
|
|
|
|
|
[1] Chay T R 1985 Physica D 16 233
[2] Glass L 1995 Chaos in Neural Systems (Cambridge: MIT) p 186
[3] Roelfsema P R, Engel A K, König P and Singer W 1997 Nature 385 157
[4] Steriade M, McCormick D A and Sejnowski T J 1993 Science 262 679
[5] Meister M, Wong R O, Baylor D A and Shatz C J 1991 Science 252 939
[6] Kreiter A K and Singer W 1996 J. Neurosci. 16 2381
[7] Bennett M V L and Verselis V K 1992 Semin. Cell. Biol. 3 29
[8] Shuai J W and Durand D M 1999 Phys. Lett. A 264 289
[9] Dhamala M, Jirsa V K and Ding M 2004 Phys. Rev. Lett. 92 074104
[10] Cornejo-Pérez O and Femat R 2005 Chaos. Soliton. Fract. 25 43
[11] Wang Q Y, Lu Q S, Chen G R and Guo D H 2006 Phys. Lett. A 356 17
[12] Wang J, Deng B and Tsang K M 2004 Chaos. Soliton. Fract. 22 469
[13] Zhou S B, Liao X F, Yu J B and Wong K W 2004 Chaos. Soliton. Fract. 21 133
[14] Meng J and Wang X Y 2007 Chaos 17 023113
[15] Wang J, Deng B and Fei X Y 2008 Chaos. Soliton. Fract. 35 512
[16] Wang X Y and Zhao Q 2010 Nonlinear Anal.-Real. 11 849
[17] Lin D and Wang X Y 2010 Neurocomputing 73 2873
[18] Zhang H G, Xie Y H, Wang Z L and Zheng C D 2007 Ieee. T. Neural. Networ. 18 1841
[19] Hodgkin A L and Huxley A F 1952 J. Physiol. 117 500
[20] Lasalle J and Lefschtg S 1961 Stability by Lyapunov's Direct Method with Application (New York: Academic)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|