Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050501    DOI: 10.1088/0256-307X/28/5/050501
GENERAL |
A New Wronskian Condition for a (3+1)-Dimensional Nonlinear Evolution Equation
WU Jian-Ping**
Institute of Electronic Technology, Information Engineering University, Zhengzhou 450004
Cite this article:   
WU Jian-Ping 2011 Chin. Phys. Lett. 28 050501
Download: PDF(344KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A new Wronskian condition is set for a (3+1)-dimensional nonlinear evolution equation. With the aid of the Hirota bilinear transformation, a novel Wronskian determinant solution is presented for the equation.
Keywords: 05.45.Yv      02.30.Jr     
Received: 13 December 2010      Published: 26 April 2011
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/050501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jian-Ping
[1] Geng X G 2003 J. Phys. A: Math. Gen. 36 2289
[2] Geng X G and Ma Y L 2007 Phys. Lett. A 369 285
[3] Wu J P 2008 Chin. Phys. Lett. 25 4192
[4] Wu J P 2010 Commu. Theor. Phys. 53 812
[5] Wu Y Q 2010 Acta Phy. Sin. 59 54 (in Chinese)
[6] Ma W X and Fan E G 2011 Comput. Math. Appl. 61 950
[7] Hirota R 2004 The Direct Methods in Soliton Theory (Cambridge: Cambridge University)
[8] Ma W X and You Y C 2005 Trans. Am. Math. Soc. 357 1753
[9] Ma W X and Maruno K I 2004 Physica A 343 219
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[3] HE Jing-Song, WANG You-Ying, LI Lin-Jing. Non-Rational Rogue Waves Induced by Inhomogeneity[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[4] YANG Zheng-Ping, ZHONG Wei-Ping. Self-Trapping of Three-Dimensional Spatiotemporal Solitary Waves in Self-Focusing Kerr Media[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[5] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[6] S. Hussain. The Effect of Spectral Index Parameter κ on Obliquely Propagating Solitary Wave Structures in Magneto-Rotating Plasmas[J]. Chin. Phys. Lett., 2012, 29(6): 050501
[7] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 050501
[8] YAN Jia-Ren**,ZHOU Jie,AO Sheng-Mei. The Dynamics of a Bright–Bright Vector Soliton in Bose–Einstein Condensation[J]. Chin. Phys. Lett., 2012, 29(5): 050501
[9] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 050501
[10] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 050501
[11] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 050501
[12] Saliou Youssoufa, Victor K. Kuetche, Timoleon C. Kofane. Generation of a New Coupled Ultra-Short Pulse System from a Group Theoretical Viewpoint: the Cartan Ehresman Connection[J]. Chin. Phys. Lett., 2012, 29(2): 050501
[13] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 050501
[14] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 050501
[15] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 050501
Viewed
Full text


Abstract