Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050306    DOI: 10.1088/0256-307X/28/5/050306
GENERAL |
Quantum Effects of Uniform Bose Atomic Gases with Weak Attraction
CHENG Ze**
School of Physics, Huazhong University of Science and Technology, Wuhan 430074
Cite this article:   
CHENG Ze 2011 Chin. Phys. Lett. 28 050306
Download: PDF(469KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We find that uniform Bose atomic gases with weak attraction can undergo a Bardeen–Cooper–Schrieffer (BCS) condensation below a critical temperature. In the BCS condensation state, bare atoms with opposite wave vectors are bound into pairs, and unpaired bare atoms are transformed into a new kind of quasi-particles, i.e. the dressed atoms. The atom-pair system is a condensate or a superfluid and the dressed-atom system is a normal fluid. The critical temperature and the effective mass of dressed atoms are derived analytically. The transition from the BCS condensation state to the normal state is a first-order phase transition.
Keywords: 03.75.Kk      05.30.Jp      64.60.-i      67.85.De     
Received: 15 July 2010      Published: 26 April 2011
PACS:  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.30.Jp (Boson systems)  
  64.60.-i (General studies of phase transitions)  
  67.85.De (Dynamic properties of condensates; excitations, and superfluid flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050306       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/050306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHENG Ze
[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269 198
[2] Davis K B, Mewes M O andrews M R, van Druten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 75 3969
[3] Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 75 1687
[4] Pethick C J and Smith H 2008 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University)
[5] Pitaevskii Lev and Stringari Sandro 2003 Bose-Einstein Condensation (Oxford: Oxford University)
[6] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 415 39
[7] Shin Yong-il, Schunck C H, Schirotzek A and Ketterle W 2008 Nature 451 689
[8] Lin C Y, Lee D S and Rivers R J 2009 Phys. Rev. A 80 043621
[9] Lewenstein M and You L 1996 Phys. Rev. A 53 909
[10] Pollack S E, Dries D, Junker M, Chen Y P, Corcovilos T A and Hulet R G 2009 Phys. Rev. Lett. 102 090402
[11] Roberts J L, Claussen N R, Cornish S L, Donley E A, Cornell E A and Wieman C E 2001 Phys. Rev. Lett. 86 4211
[12] Beliaev S T 1958 Soviet Phys. JETP 7 289
[13] Fetter A L and Walecka J D 1971 Quantum Theory of Many-Particle Systems (New York: McGraw-Hill) p 316
[14] Callaway J 1991 Quantum Theory of the Solid State second edn (New York: Academic Press) p 720
Related articles from Frontiers Journals
[1] CAO Li-Juan,LIU Shu-Juan**,LÜ Bao-Long. The Interference Effect of a Bose–Einstein Condensate in a Ring-Shaped Trap[J]. Chin. Phys. Lett., 2012, 29(5): 050306
[2] TIE Lu, XUE Ju-Kui. The Anisotropy of Dipolar Condensate in One-Dimensional Optical Lattices[J]. Chin. Phys. Lett., 2012, 29(2): 050306
[3] ZHANG Jian-Jun, CHENG Ze. Temperature Dependence of Atomic Decay Rate[J]. Chin. Phys. Lett., 2012, 29(2): 050306
[4] GU Ting-Ting, WU Xiang, QIN Shan, LIU Jing, LI Yan-Chun, ZHANG Yu-Feng. High-Pressure and High-Temperature in situ X−Ray Diffraction Study of FeP2 up to 70 GPa[J]. Chin. Phys. Lett., 2012, 29(2): 050306
[5] ZHU Bi-Hui, , LIU Shu-Juan, XIONG Hong-Wei, ** . Evolution of the Interference of Bose Condensates Released from a Double-Well Potential[J]. Chin. Phys. Lett., 2011, 28(9): 050306
[6] HAO Ya-Jiang . Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement[J]. Chin. Phys. Lett., 2011, 28(7): 050306
[7] HUANG Bei-Bing**, WAN Shao-Long . A Finite Temperature Phase Diagram in Rotating Bosonic Optical Lattices[J]. Chin. Phys. Lett., 2011, 28(6): 050306
[8] FAN Jing-Han, GU Qiang**, GUO Wei . Thermodynamics of Charged Ideal Bose Gases in a Trap under a Magnetic Field[J]. Chin. Phys. Lett., 2011, 28(6): 050306
[9] DUAN Yi-Feng**, QIN Li-Xia, SHI Li-Wei, TANG Gang . Pressure-Induced Anomalous Phase Transitions and Colossal Enhancements of Piezoelectricity in Ground-State BaTiO3[J]. Chin. Phys. Lett., 2011, 28(4): 050306
[10] DING Jian-Xu, WANG Tao, WANG Sheng-Lai**, CUI De-Liang**, MU Xiao-Ming, XU Xin-Guang . Effect of Pressure on Thermal Stability and Decomposition of KDP Crystal[J]. Chin. Phys. Lett., 2011, 28(2): 050306
[11] DUAN Ya-Fan, XU Zhen, QIAN Jun, SUN Jian-Fang, JIANG Bo-Nan, HONG Tao** . Disorder Induced Dynamic Equilibrium Localization and Random Phase Steps of Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2011, 28(10): 050306
[12] XU Zhi-Jun**, ZHANG Dong-Mei, LIU Xia-Yin . Interference Pattern of Density-Density Correlation for Incoherent Atoms with Vortices Released from an Optical Lattice[J]. Chin. Phys. Lett., 2011, 28(1): 050306
[13] MA Zhong-Qi, C. N. Yang,. Bosons or Fermions in 1D Power Potential Trap with Repulsive Delta Function Interaction[J]. Chin. Phys. Lett., 2010, 27(9): 050306
[14] YOU Yi-Zhuang. Ground State Energy of One-Dimensional δ-Function Interacting Bose and Fermi Gas[J]. Chin. Phys. Lett., 2010, 27(8): 050306
[15] LIU Xun-Xu, ZHANG Xiao-Fei, ZHANG Peng. Vector Solitons and Soliton Collisions in Two-Component Bose-Einstein Condensates[J]. Chin. Phys. Lett., 2010, 27(7): 050306
Viewed
Full text


Abstract