Chin. Phys. Lett.  2011, Vol. 28 Issue (5): 050201    DOI: 10.1088/0256-307X/28/5/050201
GENERAL |
Construction of Lyapunov Function for Dissipative Gyroscopic System
XU Wei1, YUAN Bo2, AO Ping1,3**
1Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine of Ministry of Education, Shanghai Jiao Tong University, Shanghai 200240
2Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
3Department of Physics, Shanghai Jiao Tong University, Shanghai 200240
Cite this article:   
XU Wei, YUAN Bo, AO Ping 2011 Chin. Phys. Lett. 28 050201
Download: PDF(409KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a force decomposition to construct a potential function in deterministic dynamics described by ordinary differential equations in the context of dissipative gyroscopic systems. Such a potential function serves as the corresponding Lyapunov function for the dynamics, hence it gives both quantitative and qualitative descriptions for stability of motion. As an example we apply our force decomposition to a four-dimensional dissipative gyroscopic system. We explicitly obtain the potential function for all parameter regimes in the linear limit, including those regimes where the Lyapunov function was previously believed not to exist.
Keywords: 02.30.Yy      87.18.Vf      45.20.Jj     
Received: 28 September 2010      Published: 26 April 2011
PACS:  02.30.Yy (Control theory)  
  87.18.Vf (Systems biology)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/5/050201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I5/050201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Wei
YUAN Bo
AO Ping
[1] Merkin D R, Afagh F F and Smirnov A L 1997 Introduction to the Theory of Stability (New York: Springer)
[2] Chetaev N G and Nadler M 1961 The stability of motion (New York: Pergamon)
[3] Krechetnikov R and Marsden J E 2007 Rev. Mod. Phys. 79 519
[4] Sepulchre R, Janković M and Kokotović P V 1997 Constructive Nonlinear Control (New York: Springer)
[5] Olson J S 1963 Ecology 44 322
[6] Dirichlet G L 1846 Journal für die reine und angewandte Mathematik 32 85
[7] Thompson W and Tait P G 1879 Treatise on Natural Philosophy Part I (Cambridge: Cambridge University)
[8] Ao P 2004 J. Phys. A: Math. Gen. 37 25
[9] Ao P 2008 Commun. Theor. Phys. 49 1073
[10] Zhu X M, Yin L, Hood L and Ao P 2004 Functional and Integrative Genomics 4 185
[11] Zhu X M, Yin L, Hood L, Galas D and Ao P 2007 Introduction to Systems Biology (Totowa: Humana) pp 336–371
[12] Wright S 1932 Proc. Sixth Int. Congr. Genet. 1 356
[13] Ao P, Galas D, Hood L and Zhu X M 2008 Med. Hypotheses 70 678
[14] Ao P, Galas D, Hood L, Yin L and Zhu X M 2010 Interdiscip. Sci. Comput. Life Sci. 2 140
[15] Waddington C H and Kacser H 1957 The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology (London: Allen and Unwin)
[16] Qian H 2005 J. Phys. Cond. Mat. 17 S3783
[17] Zhang Y et al 2006 Physica D 219 35
[18] Cao Y F and Liang J 2008 BMC Syst. Biol. 2 30
[19] Wang J, Xu L and Wang E K 2008 Proc. Natl. Acad. Sci. U. S. A 105 12271
[20] Schultz D 2008 Proc. Natl. Acad. Sci. U. S. A 105 19165
[21] Wio H S 2009 Int. J. Bifer. Chaos 19 2813
[22] Ramos A F, Innocentini G C P, Forger F M and Hornos J E M 2010 IET Systems Biol. 4 311
[23] Bou-Rabee N M, Marsden J E and Romero L A 2008 SIAM Rev. 50 325
[24] Nicolis G and Prigogine I 1977 Self-Organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations (New York: Wiley)
[25] Kwon C, Ao P and Thouless D J 2005 Proc. Natl. Acad. Sci. U. S. A 102 13029
[26] Xing J H 2010 J. Phys. A: Math. Theor. 43 375003
Related articles from Frontiers Journals
[1] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 050201
[2] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 050201
[3] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 050201
[4] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 050201
[5] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 050201
[6] XIA Li-Li . Poisson Theory and Inverse Problem in a Controllable Mechanical System[J]. Chin. Phys. Lett., 2011, 28(12): 050201
[7] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 050201
[8] TANG Wen-Yan**, QU Zhi-Hua, GUO Yi . Analysis and Control of Two-Layer Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(11): 050201
[9] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 050201
[10] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 050201
[11] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 050201
[12] ZHENG Shi-Wang, XIE Jia-Fang, WANG Jian-Bo, CHEN Xiang-Wei. Another Conserved Quantity by Mei Symmetry of Tzénoff Equation for Non-Holonomic Systems[J]. Chin. Phys. Lett., 2010, 27(3): 050201
[13] XIE Yin-Li, JIA Li-Qun. Special Lie–Mei Symmetry and Conserved Quantities of Appell Equations Expressed by Appell Fun[J]. Chin. Phys. Lett., 2010, 27(12): 050201
[14] XIE Guang-Xi, CUI Jin-Chao, ZHANG Yao-Yu, JIA Li-Qun. Structural Equation and Mei Conserved Quantity of Mei Symmetry for Appell Equations with Redundant Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 050201
[15] PANG Ting, FANG Jian-Hui, ZHANG Ming-Jiang, LIN Peng, LU Kai. Perturbation to Mei Symmetry and Generalized Mei Adiabatic Invariants for Nonholonomic Systems in Terms of Quasi-Coordinates[J]. Chin. Phys. Lett., 2009, 26(7): 050201
Viewed
Full text


Abstract