Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 037701    DOI: 10.1088/0256-307X/28/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Microwave Absorption Properties of Ni-Foped SiC Powders in the 2–18GHz Frequency Range
JIN Hai-Bo1**, LI Dan1, CAO Mao-Sheng1, DOU Yan-Kun1, CHEN Tao1, WEN Bo1, Simeon Agathopoulos2
1School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
2Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
Cite this article:   
JIN Hai-Bo, LI Dan, CAO Mao-Sheng et al  2011 Chin. Phys. Lett. 28 037701
Download: PDF(616KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Ni-doped SiC powder with improved dielectric and microwave absorption properties was prepared by self-propagating high-temperature synthesis (SHS). The XRD analysis of the as-synthesized powders suggests that Ni is accommodated in the sites of Si in the lattice of SiC, which shrinks in the presence of Ni. The experimental results show an improvement in the dielectric properties of the Ni-doped SiC powder in the frequency range of 2–18 GHz. The bandwidth of the reflection loss below −10 dB is broadened from 3.04 (for pure SiC) to 4.56 GHz (for Ni-doped SiC), as well as the maximum reflection loss of produced powders from 13.34 to 22.57 dB, indicating that Ni-doped SiC could be used as an effective microwave absorption material.
Keywords: 77.22.Gm      77.84.Bw      77.84.-s     
Received: 22 December 2010      Published: 28 February 2011
PACS:  77.22.Gm (Dielectric loss and relaxation)  
  77.84.Bw (Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/037701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/037701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIN Hai-Bo
LI Dan
CAO Mao-Sheng
DOU Yan-Kun
CHEN Tao
WEN Bo
Simeon Agathopoulos
[1] Krstic V D 1992 J. Am. Ceram. Soc. 75 170
[2] Fissel A, Schroter B and Richter W 1995 Appl. Phys. Lett. 66 3182
[3] Martin H P, Ecke R and Muller E 1998 J. Eur. Ceram. Soc. 18 1737
[4] Jin H B, Li J T, Cao M S and Agathopoulos S 2009 Powder Technol. 196 229
[5] Zhao D L, Luo F and Zhou W C 2010 J. Alloys Compd. 490 190
[6] Zhang R, Gao L, Wang H L and Guo J K 2004 Appl. Phys. Lett. 85 2047
[7] Luo F, Jiao H, Zhu D M and Zhou W C 2005 Mater. Lett. 59 105
[8] Zhao D L, Zhao H S and Zhou W C 2001 Physica E 9 679
[9] Zhang B, Li J B, Sun J J, Zhang S X, Zhai H Z and Du Z W 2002 J. Eur. Ceram. Soc. 22 93
[10] Huan J, Zhou W C and Fa L 2002 J. Mater. Chem. 12 2459
[11] Li Z M, Zhou W C, Su X L, Luo F, Zhu D M and Liu P L 2008 J. Am. Ceram. Soc. 91 2607
[12] Su X L, Zhou W C, Xu J, Li Z M, Luo F and Zhu D M 2010 J. Alloys Compd. 492 L16
[13] Jin H B, Cao M S, Zhou W and Agathopoulos S 2010 Mater. Res. Bull. 45 247
[14] Li Z M, Zhou W C, Lei T M, Luo F, Huang Y X and Cao Q X 2009 J. Alloys Compd. 475 506
[15] Li Z M, Zhou W C, Su X L, Huang Y X, Li G F and Wang Y P 2009 J. Am. Ceram. Soc. 92 2116
[16] Luo F, Zhu D M, Su X L and Zhou W C 2007 Mat. Sci. Eng. A 458 7
[17] Lu R, Fang X Y, Kang Y Q, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 044101
[18] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song W L and Cao M S 2008 Chin. Phys. Lett. 25 1902
[19] Li Y J, Wang R, Qi F M and Wang C M 2008 Appl. Surf. Sci. 254 4708
[20] Zou G Z, Cao M S, Lin H B, Kang Y Q and Chen Y J 2006 Powder Technol. 168 84
[21] Medvedeva N I, Yuryeva É I and IvanovskiÏ A L 2002 Semiconductors 36 751
[22] Gubanov V A, Boekema C and Fong C Y 2001 Appl. Phys. Lett. 78 216
[23] Yurieva É I 2004 J. Struct. Chem. 45 194
[24] Barbosa K O, Machado W V M and Assali L V C 2001 Physica B: Condens. Matter. 308 726
[25] Medvedeva N I, Yur'eva E I and IvanovskiÏ A L 2003 Semiconductors 37 1243
[26] Gadzira M, Gnesin G, Mykhaylyk O and Andreyev O 1998 Diamond Relat. Mater. 7 1466
[27] Zhang B, Li J B and Sun J J 2001 Mater. Lett. 51 219
[28] Su X L, Zhou W C, Xu J, Li Z M, Luo F, Du H L and Zhu D M 2009 Mater. Res. Bull. 44 880
[29] Michielssen E, Sajer J M, Ranjithan S and Mittra R 1993 IEEE Trans. Microwave Theor. Technol. 41 1024
[30] Cao M S, Qin R R, Qiu C J and Zhu J 2003 Mater. Des. 24 391
[31] Cao M S, Yuan J, Liu H T, Fang X Y and Zhu J 2003 Mater. Des. 24 31
Related articles from Frontiers Journals
[1] WANG Ye-An, WANG Yun-Bo, RAO Wei, GAO Jun-Xiong, ZHOU Wen-Li, YU Jun. Electric and Magnetic Properties of the (1-x)Ba0.6Sr0.4TiO3-xCoFe2O4 Multiferroic Composite Ceramics[J]. Chin. Phys. Lett., 2012, 29(6): 037701
[2] GONG Yu-Fei,WU Ping,LIU Wei-Fang**,WANG Shou-Yu,LIU Guang-Yao,RAO Guang-Hui. Switchable Ferroelectric Diode Effect and Piezoelectric Properties of Bi0.9La0.1FeO3 Ceramics[J]. Chin. Phys. Lett., 2012, 29(4): 037701
[3] M. R. Shah**,A. K. M. Akther Hossain. Influence of Lanthanum on the Microstructural and Dielectric Properties of Polycrystalline Ba(Ti0.5Fe0.5)O3[J]. Chin. Phys. Lett., 2012, 29(4): 037701
[4] ZHANG Hong-Ling, WANG Gen-Shui, CHEN Xue-Feng, CAO Fei, DONG Xian-Lin**, GU Yan, HE Hong-Liang, LIU Yu-Sheng . Mechanism of the Pyroelectric Response under Direct-Current Bias in La-Modified Lead Zirconate Titanate Stannate Ceramics[J]. Chin. Phys. Lett., 2011, 28(9): 037701
[5] DU Juan**, WANG Jin-Feng, ZANG Guo-Zhong, YI Xiu-Jie . Ca0.5Sr0.5TiO3-Modified KNN-Based Lead-Free Piezoceramics with a Wide Temperature Usage Span[J]. Chin. Phys. Lett., 2011, 28(6): 037701
[6] LIU Hai-Tao, ZHONG Jia-Song, LIU Bing-Feng, LIANG Xiao-Juan, YANG Xin-Yu, JIN Huai-Dong, YANG Fan, XIANG Wei-Dong, ** . L-cystine-Assisted Growth and Mechanism of CuInS2 Nanocrystallines via Solvothermal Process[J]. Chin. Phys. Lett., 2011, 28(5): 037701
[7] XU Li-Chun, WANG Ru-Zhi**, DENG Yang, YAN Hui . First Principles Study of Dopant Site Selectivity in Ordered Perovskite CaCu3Ti4O12[J]. Chin. Phys. Lett., 2011, 28(3): 037701
[8] HOU Zhi-Ling**, ZHOU Hai-Feng, YUAN Jie, KANG Yu-Qing, YANG Hui-Jing, JIN Hai-Bo, CAO Mao-Sheng** . Enhanced Ferromagnetism and Microwave Dielectric Properties of Bi0.95Y0.05FeO3 Nanocrystals[J]. Chin. Phys. Lett., 2011, 28(3): 037701
[9] WU Yu-Qiang, WU Hong-Ying**, ZHAO Jie, LU Cui-Min, ZHANG Bao-Long, LIU Qing-Suo, MA Yong-Chang, . The Evidence for Ferroelectricity on Magnetite Ceramics below the Verwey Transition[J]. Chin. Phys. Lett., 2011, 28(12): 037701
[10] MA Yong-Chang, ZHANG Jian-Zhu, ZHAO Jie, LIU Qing-Suo. Temperature- and Frequency-Dependent Dielectric Properties of La1.5Sr0.5NiO4-δ[J]. Chin. Phys. Lett., 2010, 27(8): 037701
[11] HUANG Ning-Xiang, ZHAO Li-Feng, XU Jia-Yang, CHEN Ji-Li, ZHAO Yong,. Effects of Substitution of Sm for Bi in BiFeO3 Thin Films Prepared by the Sol-Gel Method[J]. Chin. Phys. Lett., 2010, 27(2): 037701
[12] XING Jie, GUO Er-Jia, JIN Kui-Juan, LU Hui-Bin, HE Meng, WEN Juan, YANG Fang. Ultraviolet Sensitive Ultrafast Photovoltaic Effect in Tilted KTaO3 Single Crystals[J]. Chin. Phys. Lett., 2010, 27(2): 037701
[13] XIAO Hai-Qing, ZHOU Chun-Lan, CAO Xiao-Ning, WANG Wen-Jing, ZHAO Lei, LI Hai-Ling, DIAO Hong-Wei. Excellent Passivation of p-Type Si Surface by Sol-Gel Al2O3 Films[J]. Chin. Phys. Lett., 2009, 26(8): 037701
[14] LI Jian-Jun, YU Jun, LI Jia, YANG Wei-Ming, ZHOU Bin, GAO Jun-Xiong, WANG Yun-Bo. Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films Crystallized inDifferent N2/O2 Ambients[J]. Chin. Phys. Lett., 2009, 26(4): 037701
[15] WANG Wei, WANG Xiao-Juan, ZHU Jun, MAO Xiang-Yu, CHEN Xiao-Bing. Relaxation of Dielectric Loss Peak over Intermediate Temperature Range in Bi5TiNbWO15 Intergrowth[J]. Chin. Phys. Lett., 2009, 26(4): 037701
Viewed
Full text


Abstract