CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Microwave Absorption Properties of Ni-Foped SiC Powders in the 2–18GHz Frequency Range |
JIN Hai-Bo1**, LI Dan1, CAO Mao-Sheng1, DOU Yan-Kun1, CHEN Tao1, WEN Bo1, Simeon Agathopoulos2
|
1School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081
2Department of Materials Science and Engineering, University of Ioannina, GR-45110 Ioannina, Greece
|
|
Cite this article: |
JIN Hai-Bo, LI Dan, CAO Mao-Sheng et al 2011 Chin. Phys. Lett. 28 037701 |
|
|
Abstract Ni-doped SiC powder with improved dielectric and microwave absorption properties was prepared by self-propagating high-temperature synthesis (SHS). The XRD analysis of the as-synthesized powders suggests that Ni is accommodated in the sites of Si in the lattice of SiC, which shrinks in the presence of Ni. The experimental results show an improvement in the dielectric properties of the Ni-doped SiC powder in the frequency range of 2–18 GHz. The bandwidth of the reflection loss below −10 dB is broadened from 3.04 (for pure SiC) to 4.56 GHz (for Ni-doped SiC), as well as the maximum reflection loss of produced powders from 13.34 to 22.57 dB, indicating that Ni-doped SiC could be used as an effective microwave absorption material.
|
Keywords:
77.22.Gm
77.84.Bw
77.84.-s
|
|
Received: 22 December 2010
Published: 28 February 2011
|
|
PACS: |
77.22.Gm
|
(Dielectric loss and relaxation)
|
|
77.84.Bw
|
(Elements, oxides, nitrides, borides, carbides, chalcogenides, etc.)
|
|
77.84.-s
|
(Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)
|
|
|
|
|
[1] Krstic V D 1992 J. Am. Ceram. Soc. 75 170
[2] Fissel A, Schroter B and Richter W 1995 Appl. Phys. Lett. 66 3182
[3] Martin H P, Ecke R and Muller E 1998 J. Eur. Ceram. Soc. 18 1737
[4] Jin H B, Li J T, Cao M S and Agathopoulos S 2009 Powder Technol. 196 229
[5] Zhao D L, Luo F and Zhou W C 2010 J. Alloys Compd. 490 190
[6] Zhang R, Gao L, Wang H L and Guo J K 2004 Appl. Phys. Lett. 85 2047
[7] Luo F, Jiao H, Zhu D M and Zhou W C 2005 Mater. Lett. 59 105
[8] Zhao D L, Zhao H S and Zhou W C 2001 Physica E 9 679
[9] Zhang B, Li J B, Sun J J, Zhang S X, Zhai H Z and Du Z W 2002 J. Eur. Ceram. Soc. 22 93
[10] Huan J, Zhou W C and Fa L 2002 J. Mater. Chem. 12 2459
[11] Li Z M, Zhou W C, Su X L, Luo F, Zhu D M and Liu P L 2008 J. Am. Ceram. Soc. 91 2607
[12] Su X L, Zhou W C, Xu J, Li Z M, Luo F and Zhu D M 2010 J. Alloys Compd. 492 L16
[13] Jin H B, Cao M S, Zhou W and Agathopoulos S 2010 Mater. Res. Bull. 45 247
[14] Li Z M, Zhou W C, Lei T M, Luo F, Huang Y X and Cao Q X 2009 J. Alloys Compd. 475 506
[15] Li Z M, Zhou W C, Su X L, Huang Y X, Li G F and Wang Y P 2009 J. Am. Ceram. Soc. 92 2116
[16] Luo F, Zhu D M, Su X L and Zhou W C 2007 Mat. Sci. Eng. A 458 7
[17] Lu R, Fang X Y, Kang Y Q, Yuan J and Cao M S 2009 Chin. Phys. Lett. 26 044101
[18] Zhou Y, Kang Y Q, Fang X Y, Yuan J, Shi X L, Song W L and Cao M S 2008 Chin. Phys. Lett. 25 1902
[19] Li Y J, Wang R, Qi F M and Wang C M 2008 Appl. Surf. Sci. 254 4708
[20] Zou G Z, Cao M S, Lin H B, Kang Y Q and Chen Y J 2006 Powder Technol. 168 84
[21] Medvedeva N I, Yuryeva É I and IvanovskiÏ A L 2002 Semiconductors 36 751
[22] Gubanov V A, Boekema C and Fong C Y 2001 Appl. Phys. Lett. 78 216
[23] Yurieva É I 2004 J. Struct. Chem. 45 194
[24] Barbosa K O, Machado W V M and Assali L V C 2001 Physica B: Condens. Matter. 308 726
[25] Medvedeva N I, Yur'eva E I and IvanovskiÏ A L 2003 Semiconductors 37 1243
[26] Gadzira M, Gnesin G, Mykhaylyk O and Andreyev O 1998 Diamond Relat. Mater. 7 1466
[27] Zhang B, Li J B and Sun J J 2001 Mater. Lett. 51 219
[28] Su X L, Zhou W C, Xu J, Li Z M, Luo F, Du H L and Zhu D M 2009 Mater. Res. Bull. 44 880
[29] Michielssen E, Sajer J M, Ranjithan S and Mittra R 1993 IEEE Trans. Microwave Theor. Technol. 41 1024
[30] Cao M S, Qin R R, Qiu C J and Zhu J 2003 Mater. Des. 24 391
[31] Cao M S, Yuan J, Liu H T, Fang X Y and Zhu J 2003 Mater. Des. 24 31
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|