PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Self-Assembled Wire Arrays and ITO Contacts for Silicon Nanowire Solar Cell Applications |
YANG Cheng1, ZHANG Gang1, LEE Dae-Young1, LI Hua-Min1, LIM Young-Dae1, YOO Won Jong1**, PARK Young-Jun2, KIM Jong-Min2
|
1Sungkyunkwan University, SKKU Advanced Institute of Nano Technology, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Korea
2Samsung Electronics Co. Ltd., San 14-1 Nongseo-dong, Giheung-gu, Yongin 446-712, Korea
|
|
Cite this article: |
YANG Cheng, ZHANG Gang, LEE Dae-Young et al 2011 Chin. Phys. Lett. 28 035202 |
|
|
Abstract Self-assembly of silicon nanowire (SiNW) arrays is studied using SF6/O2 plasma treatment. The self-assembly method can be applied to single- and poly-crystalline Si substrates. Plasma conditions can control the length and diameter of the SiNW arrays. Lower reflectance of the wire arrays over the wavelength range 200–1100 nm is obtained. The conducting transparent indium-tin-oxide (ITO) electrode can be fully coated on the self-assembled SiNW arrays by sputtering. The ITO-coated SiNW solar cells show the same low surface light reflectance and a higher carrier collection efficiency than SiNW solar cells without ITO coating. An efficiency enhancement of around 3 times for ITO coated SiNW solar cells is demonstrated via experiments.
|
Keywords:
52.77.Bn
52.80.Pi
78.67.Uh
73.22.-f
|
|
Received: 10 December 2010
Published: 28 February 2011
|
|
PACS: |
52.77.Bn
|
(Etching and cleaning)
|
|
52.80.Pi
|
(High-frequency and RF discharges)
|
|
78.67.Uh
|
(Nanowires)
|
|
73.22.-f
|
(Electronic structure of nanoscale materials and related systems)
|
|
|
|
|
[1] Zhang Y Z, Wu L H, Liu Y P, Xie E Q, Yan D and Chen J T 2009 Chin. Phys. Lett. 26 038201
[2] Gunawan O, Wang K, Fallahazad B, Zhang Y, Tutuc E and Guha S 2010 Prog. Photovolt: Res. Appl. (accepted)
[3] Yang L, Feng Q, Ng B, Luo X and Hong M 2010 Appl. Phys. Express 3 102602
[4] Kelzenberg M D, Boettcher S W, Petykiewicz J A, Turner-Evans D B, Putnam M C, Warren E L, Spurgeon J M, Briggs R M, Lewis N S and Atwater H A 2010 Nature Mater. 9 239
[5] Boettcher S W, Spurgeon J M, Putnam M C, Warren E L, Turner-Evans D B, Kelzenberg M D, Maiolo J R, Atwater H A and Lewis N S 2010 Science 327 185
[6] Tian B, Zhang X, Kempa T J, Fang Y, Yu N, Yu G, Huang J and Lieber C M 2007 Nature 449 885
[7] Kempa T J, Tian B, Kim D R, Hu J, Zheng X and Lieber C M 2008 Nano Lett. 8 3456
[8] Wong S M, Yu H Y, Li J S, Zhang G, Lo P G Q and Kwong D L 2010 IEEE Electron. Devices Lett. 31 335
[9] Peng K, Xu Y, Wu Y, Yan Y, Lee S T and Zhu J 2005 Small 1 1062
[10] Peng K Q, Wang X, Wu X L and Lee S T 2009 Nano Lett. 9 3704
[11] Yang C, Ryu S H, Lim Y D and Yoo W J 2008 NANO 3 169
[12] Drotar J, Zhao Y P, Lu T M and Wang G C 2000 Phys. Rev. B 61 3012
[13] Garnett E C, Tseng Y C, Khanal D R, Wu J, Bokor J and Yang P 2009 Nature Nanotechnol. 4 311
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|