Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 034703    DOI: 10.1088/0256-307X/28/3/034703
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Statistical Analysis of Coherent Vortical Structures in a Supersonic Turbulent Boundary Layer
WANG Li, LU Xi-Yun**
Department of Modern Mechanics, University of Science and Technology of China, Hefei 230026
Cite this article:   
WANG Li, LU Xi-Yun 2011 Chin. Phys. Lett. 28 034703
Download: PDF(565KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract coherent vortical structures in a compressible turbulent boundary layer are statistically analyzed by means of direct numerical simulation of the compressible Navier–Stokes equations for Mach number M=2 and Reynolds number Reθ1000 based on the inlet momentum thickness. It is found that a large variety of hairpin-like and cane-like vortical structures exist in the boundary layer and the most popular structure is the cane-like one. The injection and sweep events contribute a major proportion of the total Reynolds stress. This study indicates structural similarities with the incompressible case. Moreover, the length scales of coherent structures in the streamwise and spanwise directions increase with the distance from the wall. The inclination angle of coherent vortical structures with respect to the streamwise direction increases from the sublayer to the buffer layer and then decreases from the buffer layer to the wake region.
Keywords: 47.27.De      47.27.ek      47.27.nb      47.40.-x     
Received: 29 October 2010      Published: 28 February 2011
PACS:  47.27.De (Coherent structures)  
  47.27.ek (Direct numerical simulations)  
  47.27.nb (Boundary layer turbulence ?)  
  47.40.-x (Compressible flows; shock waves)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/034703       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/034703
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Li
LU Xi-Yun
[1] Robinson S K 1991 Annu. Rev. Fluid Mech. 23 601
[2] Stanislas M, Perret L and Foucaut J M 2008 J. Fluid Mech. 602 327
[3] Chen L W, Xu C Y and Lu X Y 2010 J. Fluid Mech. 643 97
[4] Xu C Y, Chen L W and Lu X Y 2010 J. Fluid Mech. 665 238
[5] Ganapathisubramani B, Clemens N T and Dolling D S 2006 J. Fluid Mech. 556 271
[6] Pirozzoli S, Bernardini M and Grass F 2008 J. Fluid Mech. 613 205
[7] Ringuette M J, Wu M and Martin M P 2008 J. Fluid Mech. 594 59
[8] Wu X H and Moin P 2009 J. Fluid Mech. 630 5
[9] Ganapathisubramani B 2007 Phys. Fluids 19 098108
[10] Ong L and Wallace J M 1998 J. Fluid Mech. 367 291
Related articles from Frontiers Journals
[1] WANG Guo-Lei, LU Xi-Yun. Large-Eddy Simulation of Underexpanded Supersonic Swirling Jets[J]. Chin. Phys. Lett., 2012, 29(6): 034703
[2] TENG Hong-Hui**, JIANG Zong-Lin . Instability Criterion of One-Dimensional Detonation Wave with Three-Step Chain Branching Reaction Model[J]. Chin. Phys. Lett., 2011, 28(8): 034703
[3] WANG Li, LU Xi-Yun** . The Effect of Mach Number on Turbulence Behaviors in Compressible Boundary Layers[J]. Chin. Phys. Lett., 2011, 28(6): 034703
[4] MA Xiao-Juan**, LIU Fu-Sheng, SUN Yan-Yun, ZHANG Ming-Jian, PENG Xiao-Juan, LI Yong-Hong . Effective Shear Viscosity of Iron under Shock-Loading Condition[J]. Chin. Phys. Lett., 2011, 28(4): 034703
[5] DU Cheng, MI Jian-Chun**, ZHOU Yu, ZHAN Jie . Mini-Jet Controlled Turbulent Round Air Jet[J]. Chin. Phys. Lett., 2011, 28(12): 034703
[6] L. P. Singh, S. D. Ram**, D. B. Singh . Analytical Solution of the Blast Wave Problem in a Non-Ideal Gas[J]. Chin. Phys. Lett., 2011, 28(11): 034703
[7] TIAN Bao-Lin, ZHANG Xin-Ting, QI Jin**, WANG Shuang-Hu . Effects of a Premixed Layer on the Richtmyer–Meshkov Instability[J]. Chin. Phys. Lett., 2011, 28(11): 034703
[8] LI Jing, LIU Zhao-Hui, WANG Han-Feng, CHEN Sheng, LIU Ya-Ming, HAN Hai-Feng, ZHENG Chu-Guang. Turbulence Modulations in the Boundary Layer of a Horizontal Particle-Laden Channel Flow[J]. Chin. Phys. Lett., 2010, 27(6): 034703
[9] LUO Jian-Ping, LU Zhi-Ming, USHIJIMA Tatsuo, KITOH Osami, LIU Yu-Lu,. Lagrangian Structure Function's Scaling Exponents in Turbulent Channel Flow[J]. Chin. Phys. Lett., 2010, 27(2): 034703
[10] LIU Xiao-Bing, CHEN Zheng-Qing, LIU Chao-Qun. Late-Stage Vortical Structures and Eddy Motions in a Transitional Boundary Layer[J]. Chin. Phys. Lett., 2010, 27(2): 034703
[11] XUE Wen-Hui, GENG Xing-Guo, LI Jie, LI Feng, WU Jun . Mechanism Analysis of One-Dimensional Quasiperiodic Groove Drag-Reduction[J]. Chin. Phys. Lett., 2010, 27(10): 034703
[12] LI Xin-Liang, FU De-Xun, MA Yan-Wen, GAO Hui. Acoustic Calculation for Supersonic Turbulent Boundary Layer Flow[J]. Chin. Phys. Lett., 2009, 26(9): 034703
[13] LIU Ya-Ming, LIU Zhao-Hui, HAN Hai-Feng, LI Jing, WANG Han-Feng, ZHENGChu-Guang. Scalar Statistics along Inertial Particle Trajectory in Isotropic Turbulence[J]. Chin. Phys. Lett., 2009, 26(6): 034703
[14] LIU Jian-Hua, JIANG Nan. Frequency Response of Near-Wall Coherent Structures to Localized Periodic Blowing and Suction in Turbulent Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(5): 034703
[15] LIN Jian-Zhong, LI Hui-Jun, ZHANG Kai. Effect of Surface Roughness and Reynolds Number on Self-Similarity of Velocity Profile in the Atmospheric Boundary Layer[J]. Chin. Phys. Lett., 2008, 25(3): 034703
Viewed
Full text


Abstract