FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Extending the Bandwidth of Electric Ring Resonator Metamaterial Absorber |
LUO Hao1,2, WANG Tao1, GONG Rong-Zhou1**, NIE Yan1, WANG Xian1
|
1Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan 430074
2College of Physics and Electronic Engineering, Xinyang Normal University, Xinyang 464000
|
|
Cite this article: |
LUO Hao, WANG Tao, GONG Rong-Zhou et al 2011 Chin. Phys. Lett. 28 034204 |
|
|
Abstract An efficient method is proposed to extend the bandwidth of a metamaterial absorber with multi-resonance structure. The basic unit cell of a metamaterial absorber consists of the electric ring resonator, dielectric substrate (FR-4) and split-wire. By assembling five sandwiched structures with different geometric dimensions into a unit cell, we obtain the superposition of five different absorption peaks. Finally, the bandwidth of metamaterial absorption is extended and the full width at half maximum is up to 1.3 GHz. The simulated and experimental results are consistent.
|
Keywords:
42.25.Bs
78.20.-e
|
|
Received: 18 April 2010
Published: 28 February 2011
|
|
PACS: |
42.25.Bs
|
(Wave propagation, transmission and absorption)
|
|
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
|
|
|
[1] Veselago V G 1968 Sov. Phys. Usp. 10 509
[2] Pendry J B, Holden A J and Stewart W J 1996 Phys. Rev. Lett. 76 4773
[3] Pendry J B, Holden A J and Robbins D J 1999 IEEE Trans. Microwave Theor. Tech. 47 2075
[4] Smith D R, Padilla W J and Vier D C 2000 Phys. Rev. Lett. 84 4184
[5] Seddon N and Bearpark T 2003 Science 302 1537
[6] Luo C, Ibanescu M and Johnson S G 2003 Science 299 368
[7] Houck A A, Brock J B and Chuang I L 2003 Phys. Rev. Lett. 90 137401
[8] Parazzoli C G, Greegor R B and Li K 2003 Phys. Rev. Lett. 90 107401
[9] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[10] Patanjali V P, Wentao T L and Plarenta V 2003 Nature 426 404
[11] Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J and Hajnal J V 2001 Science 291 849
[12] Landy N I, Sajuyigbe S and Mock J J 2008 Phys. Rev. Lett. 100 207402
[13] Parsons A D and Pedder D J 1988 J. Vac. Sci. Technol. A 6 1686
[14] Rand B P, Peumans P and Forrest S R 2004 J. Appl. Phys. 96 7519
[15] Pillai S, Catchpole K R, Trupke T and Green M A 2007 J. Appl. Phys. 101 093105
[16] Zhu W R, Zhao X P, Bao Shi and Zhang Y P 2010 Chin. Phys. Lett. 27 014204
[17] Wang J F, Qu Sh B, Xu Zh, Zhang J Q, Ma H, Yang Y M and Gu Ch 2009 Photon. Nanostrct.: Fundament. Appl. 7 108
[18] Gollub J, Hand T, Sajuyigbe S, Mendonca S, Cummer S and Smith D R 2007 Appl. Phys. Lett. 91 162907
[19] Yuan Y, Bingham C, Tyler T, Palit S, Hand T H and Padilla W J 2008 Appl. Phys. Lett. 93 191110
[20] Munk B 2000 Frequency Selective Surfaces: Theory and Design (New York: Wiley) 325
[21] Wen Q Y, Xie Y S, Zhang Q H, Li Y X and Liu Y L 2009 Opt. Express 22 20256
[22] Pai P F 2010 J. Intelligent Material Systems and Structures 21 517
[23] Smith D R, Vier D C, Koschny T and Soukoulis C M 2005 Phys. Rev. E 71 036617
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|