GENERAL |
|
|
|
|
Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model |
YOOER Chi-Feng1,2**, WEI Fang3, XU Jian-Xue2, ZHANG Xin-Hua2
|
1Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032
2Institute of Nonlinear Dynamics, Xi'an Jiaotong University, Xi'an 710049
3XAC Research and Development Center, Xi'an 710089
|
|
Cite this article: |
YOOER Chi-Feng, WEI Fang, XU Jian-Xue et al 2011 Chin. Phys. Lett. 28 030501 |
|
|
Abstract We carry out numerical and theoretical investigations on the global unstable invariant set (manifold) of a saddle-node limit cycle in a leech heart interneuron model. The corresponding global bifurcation is accompanied by an explosion of secondary bifurcations of limit cycles and the emergence of loop-shaped bifurcation structures. The dynamical behaviors of the trajectories of the invariant set are very complicated and can only be partially explained by existing theories.
|
Keywords:
05.45.-a
87.19.L-
02.30.Oz
|
|
Received: 19 November 2010
Published: 28 February 2011
|
|
|
|
|
|
[1] Shilnikov A and Cymbalyuk G 2005 Phys. Rev. Lett. 94 048101
[2] Shilnikov A, Calabrese R and Cymbalyuk G 2005 Phys. Rev. E 71 056214
[3] Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 080501
[4] Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 070504
[5] Turaev D V and Shilnikov L P 1995 Dokl. Math. 51 404
[6] Rinzel J 1985 Lect. Notes Math. 1151 304
[7] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[8] Dellnitz M and Hohmann A 1996 Nonlinear Dynamical Systems and Chaos ed Broer H W, Van Gils S A, Hoveijn I and Takens F (Basel: Birkhauser) p 449
[9] Dellnitz M and Hohmann A 1997 Numer. Math. 75 293
[10] Dellnitz M and Junge O 2002 Handbook of Dynamical Systems II: Towards Applications ed Fiedler B, Iooss G and Kopell N (Singapore: World Scientific) p 221
[11] Hsu C S 1992 Int. J. Bifurcat. Chaos 2 727
[12] Krauskopf B, Osinga H M, Doedel E J, Henderson M E, Guckenheimer J, Vladimirsky A, Dellnitz M and Junge O 2005 Int. J. Bifurcat. Chaos 15 763
[13] Dellnitz M, Froyland G and Junge O 2001 Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems ed Fiedler B (Berlin: Springer-Verlag) p 145
[14] Doedel E J 2009 AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations
[15] Pontryagin L S 1957 Izv. Akad. Nauk SSSR Ser. Mater. 21 605
[16] Pontryagin L S and Rodygin L V 1960 Sov. Math. Dokl. 1 237
[17] Tikhonov A N 1948 Math. Sb. 22 193
[18] Tikhonov A N 1952 Math. Sb. 31 575
[19] Fenichel N 1979 J. Diff. Eq. 31 53
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|