Chin. Phys. Lett.  2011, Vol. 28 Issue (3): 030501    DOI: 10.1088/0256-307X/28/3/030501
GENERAL |
Exotic Homoclinic Surface of a Saddle-Node Limit Cycle in a Leech Neuron Model
YOOER Chi-Feng1,2**, WEI Fang3, XU Jian-Xue2, ZHANG Xin-Hua2
1Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032
2Institute of Nonlinear Dynamics, Xi'an Jiaotong University, Xi'an 710049
3XAC Research and Development Center, Xi'an 710089
Cite this article:   
YOOER Chi-Feng, WEI Fang, XU Jian-Xue et al  2011 Chin. Phys. Lett. 28 030501
Download: PDF(889KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We carry out numerical and theoretical investigations on the global unstable invariant set (manifold) of a saddle-node limit cycle in a leech heart interneuron model. The corresponding global bifurcation is accompanied by an explosion of secondary bifurcations of limit cycles and the emergence of loop-shaped bifurcation structures. The dynamical behaviors of the trajectories of the invariant set are very complicated and can only be partially explained by existing theories.
Keywords: 05.45.-a      87.19.L-      02.30.Oz     
Received: 19 November 2010      Published: 28 February 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  87.19.L- (Neuroscience)  
  02.30.Oz (Bifurcation theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/3/030501       OR      https://cpl.iphy.ac.cn/Y2011/V28/I3/030501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YOOER Chi-Feng
WEI Fang
XU Jian-Xue
ZHANG Xin-Hua
[1] Shilnikov A and Cymbalyuk G 2005 Phys. Rev. Lett. 94 048101
[2] Shilnikov A, Calabrese R and Cymbalyuk G 2005 Phys. Rev. E 71 056214
[3] Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 080501
[4] Yooer C, Xu J and Zhang X 2009 Chin. Phys. Lett. 26 070504
[5] Turaev D V and Shilnikov L P 1995 Dokl. Math. 51 404
[6] Rinzel J 1985 Lect. Notes Math. 1151 304
[7] Izhikevich E M 2000 Int. J. Bifurcat. Chaos 10 1171
[8] Dellnitz M and Hohmann A 1996 Nonlinear Dynamical Systems and Chaos ed Broer H W, Van Gils S A, Hoveijn I and Takens F (Basel: Birkhauser) p 449
[9] Dellnitz M and Hohmann A 1997 Numer. Math. 75 293
[10] Dellnitz M and Junge O 2002 Handbook of Dynamical Systems II: Towards Applications ed Fiedler B, Iooss G and Kopell N (Singapore: World Scientific) p 221
[11] Hsu C S 1992 Int. J. Bifurcat. Chaos 2 727
[12] Krauskopf B, Osinga H M, Doedel E J, Henderson M E, Guckenheimer J, Vladimirsky A, Dellnitz M and Junge O 2005 Int. J. Bifurcat. Chaos 15 763
[13] Dellnitz M, Froyland G and Junge O 2001 Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems ed Fiedler B (Berlin: Springer-Verlag) p 145
[14] Doedel E J 2009 AUTO-07P: Continuation and Bifurcation Software for Ordinary Differential Equations
[15] Pontryagin L S 1957 Izv. Akad. Nauk SSSR Ser. Mater. 21 605
[16] Pontryagin L S and Rodygin L V 1960 Sov. Math. Dokl. 1 237
[17] Tikhonov A N 1948 Math. Sb. 22 193
[18] Tikhonov A N 1952 Math. Sb. 31 575
[19] Fenichel N 1979 J. Diff. Eq. 31 53
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[3] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[4] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[5] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[6] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 030501
[7] WU Jie,ZHAN Xi-Sheng**,ZHANG Xian-He,GAO Hong-Liang. Stability and Hopf Bifurcation Analysis on a Numerical Discretization of the Distributed Delay Equation[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 030501
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 030501
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 030501
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 030501
Viewed
Full text


Abstract