CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Enhancement of Er3+ Emission from an Er−Si Codoped Al2O3 Film by Stacking Si−Doped Al2O3 Sublayers |
WANG Xiao1, JIANG Zui-Min1, XU Fei2,3**, MA Zhong-Quan2, XU Run4, YU Bin2, LI Ming-Zhu1, ZHENG Ling-Ling2, FAN Yong-Liang1, HUANG Jian4, LU Fang1
|
1State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433
2SHU-SolarE R&D Lab, Department of Physics, College of Sciences, Shanghai University, Key Laboratory for Material Microstructures of Shanghai University, Shanghai 200444
3Instituto de Óptica, CSIC, Serrano 121, 28006, Madrid, Spain
4Department of Electronic Information Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444
|
|
Cite this article: |
WANG Xiao, JIANG Zui-Min, XU Fei et al 2011 Chin. Phys. Lett. 28 127802 |
|
|
Abstract A multilayer film (multi-film), consisting of alternate Er-Si-codoped Al2O3 (ESA) and Si−doped Al2O3 (SA) sublayers, is synthesized by co−sputtering from separated Er, Si, and Al2O3 targets. The dependence of Er3+ related photoluminescence (PL) properties on annealing temperatures over 700–1100°C is studied. The maximum intensity of Er3+ photoluminance (PL), about 10 times higher than that of the monolayer film, is obtained from the multi−film annealed at 950°C. The enhancement of Er3+ PL intensity is attributed to the energy transfer from the silicon nanocrystals (Si−NCs) to the neighboring Er3+ ions. The effective characteristic interaction distance (or the critical ET length) between Er and carriers (Si−NCs) is ∼3 nm. The PL intensity exhibits a nonmonotonic temperature dependence. Meanwhile, the PL integrated intensity at room temperature is about 30% higher than that at 14 K.
|
Keywords:
78.20.-e
78.55.-m
78.67.Bf
81.15.Cd
|
|
Received: 24 June 2011
Published: 29 November 2011
|
|
PACS: |
78.20.-e
|
(Optical properties of bulk materials and thin films)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
81.15.Cd
|
(Deposition by sputtering)
|
|
|
|
|
[1] Polman A 1997 J. Appl. Phys. 82 1
[2] Kenyon A J, Trwoga P F, Federighi M and Pitt C W 1994 J. Phys. : Condens. Matter 6 L319
[3] Fujii M, Yoshida M, Kanzawa Y, Hayashi S and Yamamoto K 1997 Appl. Phys. Lett. 71 1198
[4] Kozanecki A, Homewood K and Sealy B J 1999 Appl. Phys. Lett. 75 793
[5] Heitmann J, Muller F, Zacharias M and Gosele U 2005 Adv. Mater. 17 795
[6] Timoshenko V Yu, Lisachenko M G, Shalygina O A, Kamenev B V, Zhigunov D M, Teterukov S A and Kashkarov P K 2004 J. Appl. Phys. 96 2254
[7] Imakita K, Fujii M and Hayashi S 2005 Phys. Rev. B 71 193301
[8] Xu F, Jiang Z M and Fan Y L 2006 Thin Solid Films 496 500
[9] Gourbilleau F, Madelon R, Dufour C and Rizk R 2005 Opt. Mater. 27 868
[10] Gourbilleau F, Dufour C, Madelon R and Rizk R 2006 Opt. Mater. 28 846
[11] Huang W Q, Jin F, Wang H X, Xu L, Wu K Y, Liu S R and Qin C J 2008 Appl. Phys. Lett. 92 221910
[12] Musa S, Weerden H J v, Yau T H and Lambeck P V 2000 IEEE J. Quantum Electron. 36 1089
[13] Bradley J D B, Agazzi L, Geskus D, Ay F, Wörhoff K and Pollnau M 2010 J. Opt. Soc. Am. B 27 187
[14] Wörhoff K, Bradley J D B, Ay F, Geskus D, Blauwendraat T and Pollnau M 2009 IEEE J. Quantum Electron. 45 454
[15] Hoven G N v d, Snoeks E, Polman A, Uffelen J W M van, Oei Y S and Smit M K 1993 Appl. Phys. Lett. 62 3065
[16] Smit M K, Acket G A and Laan C J v d 1986 Thin Solid Films 138 171
[17] Hoven G N van den, Koper R J I M, Polman A, van Dam C, Uffelen J W M van and Smit M K 1996 Appl. Phys. Lett. 68 1886
[18] Serna R and Afonso C N 1996 Appl. Phys. Lett. 69 1541
[19] Capobianco J A, Proulx P P, Andrianasolo B and Champagnon B 1991 Phys. Rev. B 43 10031
[20] Polman A, Custer J S, Zagwijn P M, Molenbroek A M and Alkemade P F A 1997 J. Appl. Phys. 81 150
[21] Iacona F, Bongiorno C, Spinella C, Boninelli S and Priolo F 2004 J. Appl. Phys. 95 3723
[22] Wu X L, Mei Y F, Siu G G, Wong K L, Moulding K, Stokes M J, Fu C L and Bao X M 2001 Phys. Rev. Lett. 86 3000
[23] Savchyn O, Ruhge F R, Kik P G, Todi R M, Coffey K R, Nukala H and Heinrich H 2007 Phys. Rev. B 76 195419
[24] Kim I Y, Shin J H and Kim K J 2009 Appl. Phys. Lett. 95 221101
[25] Kik P G, Brongersma M L and Polman A 2000 Appl. Phys. Lett. 76 2325
[26] Hoven G N van den, Shin J H, Polman A, Lombardo S and Campisano S U 1995 J. Appl. Phys. 78 2642
[27] Kanemitsu Y, Ogawa T, Shiraishi K and Takeda K 1993 Phys. Rev. B 4 8 4883
[28] Brongersma M L, Kik P G, Polman A, Min K S and Atwater H A 2000 Appl. Phys. Lett. 76 351
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|