Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 127203    DOI: 10.1088/0256-307X/28/12/127203
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer
ZHAO Geng1, CHENG Xiao-Man1,2**, TIAN Hai-Jun2, DU Bo-Qun1, LIANG Xiao-Yu2
1School of Science, Tianjin University of Technology, Tianjin 300384
2Institute of Material Physics, Key Laboratory of Display Material and Photoelectric Devices (Ministry of Education), and Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384)
Cite this article:   
ZHAO Geng, CHENG Xiao-Man, TIAN Hai-Jun et al  2011 Chin. Phys. Lett. 28 127203
Download: PDF(668KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We fabricate pentacene-based organic field effect transistors (OFETs), inserting a transition metal oxide (V2O5) layer between the pentacene and Al source−drain (S/D) electrodes. The performance of the devices with V2O5/Al S/D electrodes is considerably improved compared to the pentacene−based OFET with only Al S/D electrodes. After the 10-nm V2O5 layer modification, the effective field-effect mobility of the devices increases from 2.7×10−3 cm2/V⋅s to 8.93×10−1 cm2/V⋅s. Owing to the change of the injection property, the effective threshold voltage (Vth) is changed from −7.5 V to −5 V and the on/off ratio shifts from 102 to 104. Moreover, the dispersion of sub−threshold current in the devices disappears. These performance improvements are ascribed to the low carrier injection barrier and the reduction of contact resistance. It is indicated that V2O5 layer modification is an effective approach to improve pentacene-based OFET performance.
Keywords: 72.80.Ga      73.40.Cg      85.30.Tv     
Received: 17 October 2011      Published: 29 November 2011
PACS:  72.80.Ga (Transition-metal compounds)  
  73.40.Cg (Contact resistance, contact potential)  
  85.30.Tv (Field effect devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/127203       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/127203
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHAO Geng
CHENG Xiao-Man
TIAN Hai-Jun
DU Bo-Qun
LIANG Xiao-Yu
[1] Tsumura A, Koezuka H and Ando T 1986 Appl. Phys. Lett. 49 1210
[2] Jiang C X, Yang X Y, Zhao K, Wu X M, Yang L Y, Cheng X M, Wei J and Yin S G 2011 Chin. Phys. Lett. 28 118502
[3] Akimichi H, Waragai K, Hotta S, Kano H and Sakaki H 1991 Appl. Phys. Lett. 58 1500
[4] Ohmori Y, Muro K, Onoda M and Yoshinoi K 1992 J. Appl. Phys 72 207
[5] Liang C J, Zou H, He Z Q, Zhang C X, Li D and Wang Y S 2010 Chin. Phys. Lett. 27 097801
[6] Necliudov P V, Shur M S, Gundlach D J and Jackson T N 2003 Solid-State Electron. 47 259
[7] Klauk H, Schmid G, Radlik W, Weber W, Zhou L, Sheraw C D, Nichols J A and Jackson T N 2003 Solid State Electron. 47 297
[8] Hamadani B H, Corley D A, Ciszek J W, Tour J M and Natelson D 2006 Nano Lett. 6 1303
[9] Rentenberger S, Vollmer A, Zojer E, Schennach R and Koch N 2006 J. Appl. Phys. 100 053701
[10] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
[11] Fujimori F, Shigeto K, Hamano T, Minari T, Miyadera T, Tsukagoshi K and Aoyagi Y 2007 Appl. Phys. Lett. 90 193507
[12] Sun Q J, Xu Z, Zhao S L, Zhang F J and Gao L Y 2011 Chin. Phys. B 20 017306
[13] Hong K, Yang S Y, Yang C, Kim S H, Choi D and Park C E 2008 Organic Electron. 9 864
[14] Li S H, Xu Z, Yang G W, Ma L P and Yang Y 2008 Appl. Phys. Lett. 93 213301
[15] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
[16] Boudinet D, Benwadih M, Qi Y B, Altazin S, Verilhac J M, Kroger M and Serbutoviez C 2010 Org. Electron. 11 227
[17] Wang S D, Miyadera T, Minari T, Aoyagi Y and Tsukagoshi K 2008 Appl. Phys. Lett. 93 043311
Related articles from Frontiers Journals
[1] CHANG Jian-Guang,WU Chun-Bo,JI Xiao-Li**,MA Hao-Wen,YAN Feng,SHI Yi,ZHANG Rong. The Leakage Current Improvement of a Ni-Silicided SiGe/Si Junction Using a Si Cap Layer and the PAI Technique[J]. Chin. Phys. Lett., 2012, 29(5): 127203
[2] XUE Bai-Qing,CHANG Hu-Dong,SUN Bing,WANG Sheng-Kai,LIU Hong-Gang**. The Impact of HCl Precleaning and Sulfur Passivation on the Al2O3/Ge Interface in Ge Metal-Oxide-Semiconductor Capacitors[J]. Chin. Phys. Lett., 2012, 29(4): 127203
[3] LU Li,CHANG Hu-Dong,SUN Bing,WANG Hong,XUE Bai-Qing,ZHAO Wei,LIU Hong-Gang**. Solid Phase Reactions of Ni-GaAs Alloys for High Mobility III–V MOSFET Applications[J]. Chin. Phys. Lett., 2012, 29(4): 127203
[4] CHEN Shun-Sheng, YANG Chang-Ping, LUO Xiao-Jing, Bä, rner K., Medvedeva I. V.. Alternating-Current Transport Properties of the Interface between Nd0.7Sr0.3MnO3 Ceramic and a Ag Electrode[J]. Chin. Phys. Lett., 2012, 29(2): 127203
[5] BI Zhi-Wei, HAO Yue, FENG Qian, GAO Zhi-Yuan, ZHANG Jin-Cheng, MAO Wei, ZHANG Kai, MA Xiao-Hua, LIU Hong-Xia, YANG Lin-An, MEI Nan, CHANG Yong-Ming. AlGaN/GaN Metal-Insulator-Semiconductor High Electron-Mobility Transistor Using a NbAlO/Al2O3 Laminated Dielectric by Atomic Layer Deposition[J]. Chin. Phys. Lett., 2012, 29(2): 127203
[6] ZENG Chang, ZHANG Shu-Ming**, WANG Hui, LIU Jian-Ping, WANG Huai-Bing, LI Zeng-Cheng, FENG Mei-Xin, ZHAO De-Gang, LIU Zong-Shun, JIANG De-Sheng, YANG Hui. Formation of Low-Resistant and Thermally Stable Nonalloyed Ohmic Contact to N-Face n-GaN[J]. Chin. Phys. Lett., 2012, 29(1): 127203
[7] LI Shao-Juan, HE Xin, HAN De-Dong, SUN Lei, WANG Yi, HAN Ru-Qi, CHAN Man-Sun, ZHANG Sheng-Dong, **. Reactive Radiofrequency Sputtering-Deposited Nanocrystalline ZnO Thin-Film Transistors[J]. Chin. Phys. Lett., 2012, 29(1): 127203
[8] C. K. Sumesh**, K. D. Patel, V. M. Pathak, R. Srivastav . Current Transport in Copper Schottky Contacts to a−Plane/ c−Plane n-Type MoSe2[J]. Chin. Phys. Lett., 2011, 28(8): 127203
[9] LIU Sheng-Hou, CAI Yong**, GONG Ru-Min, WANG Jin-Yan, ZENG Chun-Hong, SHI Wen-Hua, FENG Zhi-Hong, WANG Jing-Jing, YIN Jia-Yun, Cheng P. Wen, QIN Hua, ZHANG Bao-Shun . Enhancement-Mode AlGaN/GaN High Electron Mobility Transistors Using a Nano-Channel Array Structure[J]. Chin. Phys. Lett., 2011, 28(7): 127203
[10] WANG Yan, LIU Qi, LV Hang-Bing, LONG Shi-Bing, ZHANG Sen, LI Ying-Tao, LIAN Wen-Tai, YANG Jian-Hong**, LIU Ming . CMOS Compatible Nonvolatile Memory Devices Based on SiO2/Cu/SiO2 Multilayer Films[J]. Chin. Phys. Lett., 2011, 28(7): 127203
[11] Kuang-Po HSUEH**, Shih-Tzung SU, Jun ZENG . Numerical Simulation of 4H-SiC Metal Semiconductor Field Transistors[J]. Chin. Phys. Lett., 2011, 28(7): 127203
[12] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 127203
[13] PAN Feng, QIAN Xian-Rui, HUANG Li-Zhen, WANG Hai-Bo, YAN Dong-Hang** . Significant Improvement of Organic Thin-Film Transistor Mobility Utilizing an Organic Heterojunction Buffer Layer[J]. Chin. Phys. Lett., 2011, 28(7): 127203
[14] CHANG Hong, **, ZHAO Yong-Gang . Enhanced Magnetic and Ferroelectric Properties and Current-Voltage Hysteresis by Addition of La and Ti to BiFeO3 on 0.7%Nb−SrTiO3[J]. Chin. Phys. Lett., 2011, 28(6): 127203
[15] WEI Meng**, WANG Xiao-Liang, XIAO Hong-Ling, WANG Cui-Mei, PAN Xu, HOU Qi-Feng, WANG Zhan-Guo . Growth of 2 µm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(4): 127203
Viewed
Full text


Abstract