CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Improved Performance of Pentacene Organic Field-Effect Transistors by Inserting a V2O5 Metal Oxide Layer |
ZHAO Geng1, CHENG Xiao-Man1,2**, TIAN Hai-Jun2, DU Bo-Qun1, LIANG Xiao-Yu2
|
1School of Science, Tianjin University of Technology, Tianjin 300384
2Institute of Material Physics, Key Laboratory of Display Material and Photoelectric Devices (Ministry of Education), and Tianjin Key Laboratory of Photoelectric Materials and Devices, Tianjin University of Technology, Tianjin 300384)
|
|
Cite this article: |
ZHAO Geng, CHENG Xiao-Man, TIAN Hai-Jun et al 2011 Chin. Phys. Lett. 28 127203 |
|
|
Abstract We fabricate pentacene-based organic field effect transistors (OFETs), inserting a transition metal oxide (V2O5) layer between the pentacene and Al source−drain (S/D) electrodes. The performance of the devices with V2O5/Al S/D electrodes is considerably improved compared to the pentacene−based OFET with only Al S/D electrodes. After the 10-nm V2O5 layer modification, the effective field-effect mobility of the devices increases from 2.7×10−3 cm2/V⋅s to 8.93×10−1 cm2/V⋅s. Owing to the change of the injection property, the effective threshold voltage (Vth) is changed from −7.5 V to −5 V and the on/off ratio shifts from 102 to 104. Moreover, the dispersion of sub−threshold current in the devices disappears. These performance improvements are ascribed to the low carrier injection barrier and the reduction of contact resistance. It is indicated that V2O5 layer modification is an effective approach to improve pentacene-based OFET performance.
|
Keywords:
72.80.Ga
73.40.Cg
85.30.Tv
|
|
Received: 17 October 2011
Published: 29 November 2011
|
|
PACS: |
72.80.Ga
|
(Transition-metal compounds)
|
|
73.40.Cg
|
(Contact resistance, contact potential)
|
|
85.30.Tv
|
(Field effect devices)
|
|
|
|
|
[1] Tsumura A, Koezuka H and Ando T 1986 Appl. Phys. Lett. 49 1210
[2] Jiang C X, Yang X Y, Zhao K, Wu X M, Yang L Y, Cheng X M, Wei J and Yin S G 2011 Chin. Phys. Lett. 28 118502
[3] Akimichi H, Waragai K, Hotta S, Kano H and Sakaki H 1991 Appl. Phys. Lett. 58 1500
[4] Ohmori Y, Muro K, Onoda M and Yoshinoi K 1992 J. Appl. Phys 72 207
[5] Liang C J, Zou H, He Z Q, Zhang C X, Li D and Wang Y S 2010 Chin. Phys. Lett. 27 097801
[6] Necliudov P V, Shur M S, Gundlach D J and Jackson T N 2003 Solid-State Electron. 47 259
[7] Klauk H, Schmid G, Radlik W, Weber W, Zhou L, Sheraw C D, Nichols J A and Jackson T N 2003 Solid State Electron. 47 297
[8] Hamadani B H, Corley D A, Ciszek J W, Tour J M and Natelson D 2006 Nano Lett. 6 1303
[9] Rentenberger S, Vollmer A, Zojer E, Schennach R and Koch N 2006 J. Appl. Phys. 100 053701
[10] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
[11] Fujimori F, Shigeto K, Hamano T, Minari T, Miyadera T, Tsukagoshi K and Aoyagi Y 2007 Appl. Phys. Lett. 90 193507
[12] Sun Q J, Xu Z, Zhao S L, Zhang F J and Gao L Y 2011 Chin. Phys. B 20 017306
[13] Hong K, Yang S Y, Yang C, Kim S H, Choi D and Park C E 2008 Organic Electron. 9 864
[14] Li S H, Xu Z, Yang G W, Ma L P and Yang Y 2008 Appl. Phys. Lett. 93 213301
[15] Chu C W, Li S H, Chen C W, Shrotriya V and Yang Y 2005 Appl. Phys. Lett. 87 193508
[16] Boudinet D, Benwadih M, Qi Y B, Altazin S, Verilhac J M, Kroger M and Serbutoviez C 2010 Org. Electron. 11 227
[17] Wang S D, Miyadera T, Minari T, Aoyagi Y and Tsukagoshi K 2008 Appl. Phys. Lett. 93 043311
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|