CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Wafer-Scale Gigahertz Graphene Field Effect Transistors on SiC Substrates |
PAN Hong-Liang1, JIN Zhi1**, MA Peng1, GUO Jian-Nan1, LIU Xin-Yu1, YE Tian-Chun1, LI Jia2, DUN Shao-Bo2, FENG Zhi-Hong2
|
1Department of Microwave IC, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029
2Science and Technology on ASIC Lab, Hebei Semiconductor Research Institute, Shijiazhuang 050051
|
|
Cite this article: |
PAN Hong-Liang, JIN Zhi, MA Peng et al 2011 Chin. Phys. Lett. 28 127202 |
|
|
Abstract Wafer-scale graphene field-effect transistors are fabricated using benzocyclobutene and atomic layer deposition Al2O3 as the top−gate dielectric. The epitaxial-graphene layer is formed by graphitization of a 2-inch-diameter Si-face semi-insulating 6H-SiC substrate. The graphene on the silicon carbide substrate is heavily n-doped and current saturation is not found. For the intrinsic characteristic of this particular channel material, the devices cannot be switched off. The cut-off frequencies of these graphene field-effect transistors, which have a gate length of 1 µm , are larger than 800 MHz. The largest one can reach 1.24 GHz. There are greater than 95% active devices that can be successfully applied. We thus succeed in fabricating wafer-scale gigahertz graphene field-effect transistors, which paves the way for high-performance graphene devices and circuits.
|
Keywords:
72.80.Vp
|
|
Received: 14 July 2011
Published: 29 November 2011
|
|
PACS: |
72.80.Vp
|
(Electronic transport in graphene)
|
|
|
|
|
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Geim A K and Novoselov K S 2007 Nature Mater. 6 183
[3] Geim A K 2010 Bull. Am. Phys. Soc. 55 J21.0004 http:// meetings.aps.org/Link/BAPS.2010.MAR.J21.4
[4] Perebeinos V, Tersoff J and Avouris P 2005 Phys. Rev. Lett. 94 086802
[5] Lemme M, Echtermeyer T J, Baus M and Kurz H 2007 IEEE Electron. Device Lett. 28 282
[6] Meric I, Han M Y, Young A F, Ozyilmaz B, Kim P and Shepard K L 2008 Nature Nanotechnol. 3 654
[7] Lin Y M,* Dimitrakopoulos C, Jenkins K A, Farmer D B, Chiu H Y, Grill A and Avouris P 2010 Science 327 662
[8] Avouris Ph*, Lin Y M, Xia F, Farmer D B, Wu Y and Mueller T 2010 IEDM Conference 10 552
[9] Kedzierski J, Hsu P L, Healey P, Wyatt P W, Keast C L, Sprinkle M, Berger C and de Heer W A 2008 IEEE Trans. Electron. Devices 55 2078
[10] Moon J S, Curtis D, Hu M, Wong D, McGuire C, Campbell P M, Jernigan G, Tedesco J L et al 2009 IEEE Electron. Device Lett. 6 650
[11] Schwierz F 2010 Nature Nanotechnol. 5 487
[12] Lee J, Chung H J, Lee J H et al 2010 IEDM Conference 10 568
[13] Ma P, Jin Z et al (in preparation)
[14] Riedl C, Coletti C and Starke U 2010 J. Phys. D: Appl. Phys. 43 374009
[15] Zhu J, Jhaveri R and Woo J C S 2010 Appl. Phys. Lett. 96 193503
[16] Farina M and Rozzi T 2001 IEEE Trans. Microwave Theor. Technol. 49 624
[17] Lin Y M, Jenkins K A, Alberto V G, Small J P, Farmer D B and Avouris P 2009 Nano Lett. 9 442
[18] Medley J M W 1993 Microwave and RF Circuits: Analysis, Synthesis and Design (London: Artech House)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|