CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
First-Principles Study of the Local Magnetic Moment on a N-Doped Cu2O (111) Surface |
WANG Zhi
|
State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083
|
|
Cite this article: |
WANG Zhi 2011 Chin. Phys. Lett. 28 127102 |
|
|
Abstract First-principles calculations based on density functional theory within the generalized gradient approximation are used to study on magnetism in N-doped Cu2O. It is interesting that nitrogen does not induce magnetism in bulk Cu2O, while shows a total magnetism moment of 1.0µB at the Cu2O (111) surface, which is mainly localized on the doped N atoms. The local magnetic moment at the N−doped Cu2O (111) surface can be explained in terms of the surface state.
|
Keywords:
71.15.Mb
73.20.At
75.30.Pd
|
|
Received: 30 May 2011
Published: 29 November 2011
|
|
PACS: |
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
75.30.Pd
|
|
|
|
|
|
[1] Ohno H 1998 Science 281 951
[2] Sato K and Katayama-Yoshida H 2002 Semicond. Sci. Technol. 17 367
[3] Sluiter M H F, Kawazoe Y, Sharma P, Inoue A, Raju A R, Rout C and Waghmare U V 2005 Phys. Rev. Lett. 94 187204
[4] Jungwirth T, Sinova J, Maǎk J, Kučra J and MacDonald A H 2006 Rev. Mod. Phys. 78 809
[5] Neal J R, Behan A J, Ibrahim R M, Blythe H J, Ziese M, Fox A M and Gehring G A 2006 Phys. Rev. Lett. 96 197208
[6] Walsh A, Da Silva J L F and Wei S H 2008 Phys. Rev. Lett. 100 256401
[7] Raebiger H, Lany S and Zunger A 2008 Phys. Rev. Lett. 101 027203
[8] Ji C J, Zhang C Q, Zhao G, Wang W J, Sun G, Yuan H M and Han Q F 2011 Chin. Phys. Lett. 28 097101
[9] Tao Z K, Zhang R, Cui X G, Xiu X Q, Zhang G Y, Xie Z L, Gu S L, Shi Y and Zheng Y D 2008 Chin. Phys. Lett. 25 1476
[10] Awschalom D D, Flatte M E and Samarth N 2002 Sci. Am. 286 66
[11] Norberg N S, Kittilstved K R, Amonette J E, Kukkadapu R K, Schwartz D A and Gamelin D R 2004 J. Am. Chem. Soc. 126 9387
[12] Radovanovic P V and Gamelin D R 2003 Phys. Rev. Lett. 91 157202
[13] Ogale S B, Choudhary R J, Buban J P, Lofland S E, Shinde S R, Kal S N, Kulkarni V N, Higgins J, Lanci C, Simpson J R, Browning N D, Sarma S D, Drew H D, Greene R L and Venkatesan T 2003 Phys. Rev. Lett. 91 077205
[14] Pan H, Yi J B, Shen L, Wu R Q, Yang J H, Lin J Y, Feng Y P, Ding J, Van L H and Yin J H 2007 Phys. Rev. Lett. 99 127201
[15] Guan L X, Tao J G, Huan C H A, Kuo J L and Wang L 2009 Appl. Phys. Lett. 95 012509
[16] Ruan K B, Ho H W, Khan R A, Ren P, Song W D, Huan A C H and Wang L 2010 Solid State Commun. 150 2158
[17] Tao J G, Guan L X, Pan J S, Huan C H A, Wang L, Kuo J L, Zhang Z, Chai J W and Wang S J 2009 Appl. Phys. Lett. 95 062505
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[20] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[21] Soon A, Todorova M, Delley B and Stampfl C 2007 Phys. Rev. B 75 125420
[22] Monkhorst H J and Pack J 1976 Phys. Rev. B 13 5188
[23] Sieberer M, Redinger J and Mohn P 2007 Phys. Rev. B 75 035203
[24] Peng H W, Xiang H J, Wei S H, Li S S, Xia J B and Li J B 2009 Phys. Rev. Lett. 102 017201
[25] Rahman G and García-Suárez V M 2010 Appl. Phys. Lett. 96 052508
[26] Elfimov I S, Rusydi A, Csiszar S I, Hu Z, Hsieh H H, Lin H J, Chen C T, Liang R and Sawatzky G A 2007 Phys. Rev. Lett. 98 137202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|