Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 126201    DOI: 10.1088/0256-307X/28/12/126201
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Production and Mechanical Behaviour of Biomedical CoCrMo Alloy
O. Sahin1**, A. Rıza Tuncdemir2, H. Ali Cetinkara1, H. Salih Guder1, E. Sahin1
1Department of Physics, Art and Science Faculty, Micro/Nanomechanic Characterization Laboratory, Mustafa Kemal University, Hatay, Turkey
2Department of Prosthetic Dentistry, Dentistry Faculty, Mustafa Kemal University, Hatay, Turkey
Cite this article:   
O. Sahin, A. R�, za Tuncdemir et al  2011 Chin. Phys. Lett. 28 126201
Download: PDF(711KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Cobalt-based alloy (Co-30Cr-5.5Mo) is produced by the investment casting process. This alloy complies with the ASTM F75 standard and is widely used in the manufacturing of orthopedic implants because of its high strength, good corrosion resistance and excellent biocompatibility properties. SEM, XRD and microhardness tests are used to examine the mechanical properties of the material. The examined material exhibits the behaviour of indentation size effect (ISE). Our results reveal that Vickers and Knoop microhardness are dependent on indentation test load. The traditional Meyer's law, the proportional specimen resistance (PSR) model and the Hays-Kendall model (HK) are used to analyze the load dependence of the hardness. As a result, the Hays-Kendall model is found to be the most effective to determine the load-independent hardness HLI of CoCrMo alloy.
Keywords: 62.20.-x      61.66.Dk     
Received: 11 May 2011      Published: 29 November 2011
PACS:  62.20.-x (Mechanical properties of solids)  
  61.66.Dk (Alloys )  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/126201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/126201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
O. Sahin
A. R�
za Tuncdemir
H. Ali Cetinkara
H. Salih Guder
E. Sahin
[1] Sahin O et al 2005 Chin. Phys. Lett. 22 3137
[2] Gong J et al 2001 Mater. Sci. Eng. A 303 179
[3] Sahin O et al 2007 Mater. Charac. 58 197
[4] Sangwal K et al 2003 Mater. Chem. Phys. 80 428
[5] Lorenzo V et al 1999 Trends Polym. Sci. 4 65
[6] Balta-Calleja F J J et al 1995 J. Mater. Sci. 30 1139
[7] Sargent P M 1986 Microindentation Techniques in Materials Science and Engineering ed Blau P J and Lawn B R (Philadelphia PA: American Society for Metals) p 160
[8] Mott B W 1956 Microindentation Hardness Testing (London: Butterworths Scientific) p 101
[9] Marshall D B and Lawn B R Sargent P M 1986 Microindentation Techniques in Materials Science and Engineering ed Blau P J and Lawn B R (Philadelphia PA: American Society for Metals) p 26
[10] Hays C and Kendall E G 1973 Metallography 6 275
[11] Luyckx S et al 1999 Mater. Sci. Lett. 18 705
[12] Ma Q and Clarke D R 1995 J. Mater. Res. 4 853
[13] Tomcik B et al 2000 Thin Solid Films 360 173
[14] Zong Z and Soboyejo W 2005 Mater. Sci. Eng. A 404 281
[15] Ren X J et al 2002 Philos. Mag. A 82 2113
[16] Wolf B and Richter A 2003 New J. Phys. 5 15
[17] Park J B 2000 The Biomedical Engineering Handbook: Section IV–Biomaterials ed Bronzino J D 2nd edn (LLC, Florida: CRC Press)
[18] Li H and Bradt R C 1993 J. Mater. Sci. 28 917
[19] Gong J and Li Y 2000 J. Mater. Sci. 35 209
[20] Shaw C et al 1996 Mater. Lett. 28 33
[21] Atkinson M and Shi H 1989 Mater. Sci. Technol. 5 613
[22] Atkinson M 1995 J. Mater. Res. 10 2908
[23] Shi H and Atkinson M 1990 J. Mater. Sci. 25 2111
[24] Lawn B R and Howes V R 1981 J. Mater. Sci. 16 2745
[25] Marshall D B et al 1982 J. Am. Ceram. Soc. 65 175
[26] Chicot D et al 2007 J. Eur. Ceram. Soc. 27 1905
[27] Gong J 2000 J Mater. Sci. Lett. 19 515
[28] Sangwal K et al 2002 Mater. Chem. Phys. 77 511
[29] Cahoon J R et al 1971 Metall. Trans. 2 1979
Related articles from Frontiers Journals
[1] YUE Yong-Hai, WANG Li-Hua, ZHANG Ze, HAN Xiao-Dong. Cross-over of the Plasticity Mechanism in Nanocrystalline Cu[J]. Chin. Phys. Lett., 2012, 29(6): 126201
[2] SU Wei, LOU Shu-Qin, YIN Guo-Lu. Theoretical Study of the Structural and Thermodynamic Properties of Amorphous SiO2 and Amorphous SiO2 with an Oxygen Defect Center[J]. Chin. Phys. Lett., 2012, 29(6): 126201
[3] JIN Min**, FANG Yong-Zheng, SHEN Hui, JIANG Guo-Jian, WANG Zhan-Yong, XU Jia-Yue . Mechanical Property Evaluation of GaAs Crystal for Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 126201
[4] SHAO Xi** . Prediction of a Low-Dense BC2N Phase[J]. Chin. Phys. Lett., 2011, 28(5): 126201
[5] CHEN Yao**, JIANG Yang, XU Pei-Qiang, MA Zi-Guang, WANG Xiao-Li, WANG Lu, JIA Hai-Qiang, CHEN Hong . Stress Control in GaN Grown on 6H-SiC by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2011, 28(4): 126201
[6] MA Dong-Fang, HOU Yan-Jun, CHEN Da-Nian**, WU Shan-Xing, WANG Huan-Ran . A Novel Impact Tension Testing for OFHC Copper Bars under Local Strain Controlled[J]. Chin. Phys. Lett., 2011, 28(1): 126201
[7] B. Y. Thakore, S. G. Khambholja, P. H. Suthar, N. K. Bhatt, A. R. Jani. Collective Modes and Elastic Constants of Liquid Al83Cu17 Binary Alloy[J]. Chin. Phys. Lett., 2010, 27(9): 126201
[8] DING Zhan-Hui, QIU Li-Xia, YAO Bin, ZHAO Xu-Dong, LU Feng-Guo, LIU Xiao-Yang. Synthesis of Nanocrystalline Cubic Hafnium Nitride by Reactive Mechanical Alloying[J]. Chin. Phys. Lett., 2010, 27(8): 126201
[9] WANG Hong, , ZHANG Zhi-Jun, ZHAO Jing-Tai, XU Jia-Yue, HU Guan-Qin, LI Pei-Jun. Mechanical Properties and Anisotropy in PbWO4 Single Crystal[J]. Chin. Phys. Lett., 2010, 27(2): 126201
[10] XIANG Yan-Xun, XUAN Fu-Zhen, DENG Ming-Xi. Evaluation of Thermal Degradation Induced Material Damage Using Nonlinear Lamb Waves[J]. Chin. Phys. Lett., 2010, 27(1): 126201
[11] ZHUO Long-Chao, PANG Shu-Jie, WANG Hui, ZHANG Tao. Ductile Bulk Aluminum-Based Alloy with Good Glass-Forming Ability and High Strength[J]. Chin. Phys. Lett., 2009, 26(6): 126201
[12] QIN Kun, YANG Li-Ming, HU Shi-Sheng. Mechanism of Strain Rate Effect Based on Dislocation Theory[J]. Chin. Phys. Lett., 2009, 26(3): 126201
[13] FAN Zhen-Jun, PAN Feng, ZHANG Dian-Lin. Growth of High-Quality Decagonal Al-Cu-Co Quasicrystals from Ternary Melt[J]. Chin. Phys. Lett., 2009, 26(2): 126201
[14] CHEN Tian-Xiang, YAO Shu-De, WANG Kun, WANG Huan, DING Zhi-Bo, CHENDi. Structure Characterization of Modified Polyimide Films Irradiated by 2MeV Si Ions[J]. Chin. Phys. Lett., 2009, 26(2): 126201
[15] CHEN Shao-Hua, PENG Zhi-Long. An Extension of the Two-Dimensional JKR Theory to the Case with a Large Contact Width[J]. Chin. Phys. Lett., 2009, 26(12): 126201
Viewed
Full text


Abstract