Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124707    DOI: 10.1088/0256-307X/28/12/124707
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Unsteady Viscous Flow over an Expanding Stretching Cylinder
FANG Tie-Gang1*, ZHANG Ji1, ZHONG Yong-Fang2, TAO Hua3
1Mechanical and Aerospace Engineering Department, North Carolina State University, 3246 EBIII-Campus Box 7910 911 Oval Drive Raleigh, NC 27695, USA
2School of Engineering, Penn State Erie, the Behrend College Erie, PA, 16563-1701, USA
3421 Egret Lane, Secaucus, NJ 07094, USA
Cite this article:   
FANG Tie-Gang, ZHANG Ji, ZHONG Yong-Fang et al  2011 Chin. Phys. Lett. 28 124707
Download: PDF(478KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the viscous flow over an expanding stretching cylinder. The solution is exact to the Navier–Stokes equations. The stretching velocity of the cylinder is proportional to the axial distance from the origin and decreases with time. There exists a unique solution for the flow with all the studied values of Reynolds number and the unsteadiness parameter. Reversal flows exist for an expanding stretching cylinder. The velocity decays faster for a larger Reynolds number and a more rapidly expanding cylinder.
Keywords: 47.10.Ad      47.15.Cb     
Received: 01 August 2011      Published: 29 November 2011
PACS:  47.10.ad (Navier-Stokes equations)  
  47.15.Cb (Laminar boundary layers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124707       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124707
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FANG Tie-Gang
ZHANG Ji
ZHONG Yong-Fang
TAO Hua
[1] Wang C Y 1989 Appl. Mech. Rev. 42 S269
[2] Wang C Y 1991 Annu. Rev. Fluid Mech. 23 159
[3] Altan T, Oh S and Gegel H 1979 Metal Forming Fundamentals and Applications ( Metals Park, OH: American Society of Metals)
[4] Fisher E G 1976 Extrusion of Plastics (New York: Wiley)
[5] Tadmor Z and Klein I 1970 Engineering Principles of Plasticating Extrusion Polymer Science and Engineering Series (New York: Van Norstrand Reinhold)
[6] Crane L J 1970 Z. Angew. Math. Phys. (ZAMP) 21 645
[7] Wang C Y 1984 Phys. Fluids 27 1915
[8] Fang T and Zhang 2008 Int. Commun. Heat Mass Transfer 35 892
[9] Fang T 2007 Phys. Fluids 19 128105
[10] Brady J F and Acrivos 1981 J. Fluid Mech. 112 127
[11] Wang C Y 1988 Phys. Fluids 31 466
[12] Wang C Y 2011 Eur. J. Mech. B Fluids 30 475
[13] Uchida S and Aoki H 1977 J. Fluid Mech. 82 371
[14] Skalak F M and Wang C Y 1979 J. Aust. Math. Soc. B 21 65
[15] Ohki M 1980 Bull. JSME: Jpn. Soc. Mech. Engin. 23 679
[16] Ohki M 1982 Bull. JSME: Jpn. Soc. Mech. Engin. 25 552
[17] Ohki M 1982 Bull. JSME: Jpn. Soc. Mech. Engin. 25 562
[18] Boutros Y Z Abd-el-Malek M B, Badran N A et al 2006 J. Comput. Appl. Math. 197 465
[19] Zhong Y and Fang T 2011 Int. J. Heat Mass Transfer 54 3103
[20] White F M 1991 Viscous Fluid Flow 2nd edn (New York: McGraw-Hill)
Related articles from Frontiers Journals
[1] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 124707
[2] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 124707
[3] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 124707
[4] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 124707
[5] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . Slip Effects on an Unsteady Boundary Layer Stagnation-Point Flow and Heat Transfer towards a Stretching Sheet[J]. Chin. Phys. Lett., 2011, 28(9): 124707
[6] Krishnendu Bhattacharyya** . Dual Solutions in Unsteady Stagnation-Point Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(8): 124707
[7] Krishnendu Bhattacharyya**, G. C. Layek . MHD Boundary Layer Flow of Dilatant Fluid in a Divergent Channel with Suction or Blowing[J]. Chin. Phys. Lett., 2011, 28(8): 124707
[8] Krishnendu Bhattacharyya . Boundary Layer Flow and Heat Transfer over an Exponentially Shrinking Sheet[J]. Chin. Phys. Lett., 2011, 28(7): 124707
[9] TANG Zhan-Qi, JIANG Nan, ** . TR PIV Experimental Investigation on Bypass Transition Induced by a Cylinder Wake[J]. Chin. Phys. Lett., 2011, 28(5): 124707
[10] SI Xin-Hui**, ZHENG Lian-Cun, ZHANG Xin-Xin, SI Xin-Yi, YANG Jian-Hong . Flow of a Viscoelastic Fluid through a Porous Channel with Expanding or Contracting Walls[J]. Chin. Phys. Lett., 2011, 28(4): 124707
[11] Krishnendu Bhattacharyya**, Swati Mukhopadhyay, G. C. Layek . MHD Boundary Layer Slip Flow and Heat Transfer over a Flat Plate[J]. Chin. Phys. Lett., 2011, 28(2): 124707
[12] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 124707
[13] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 124707
[14] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 124707
[15] QU Chao, SONG Fu-Quan** . Flow Characteristics of Deionized Water in Microtubes Absorbing Fluoro-Alkyl Silanes[J]. Chin. Phys. Lett., 2011, 28(10): 124707
Viewed
Full text


Abstract