Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124705    DOI: 10.1088/0256-307X/28/12/124705
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Three-Dimensional Simulation of Detonation Propagation in a Rectangular Duct by an Improved CE/SE Scheme
SHEN Hua1,2, LIU Kai-Xin1,2**, ZHANG De-Liang3
1LTCS and College of Engineering, Peking University, Beijing 100871
2Center for Applied Physics and Technology, Peking University, Beijing 100871
3LHD, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080
Cite this article:   
SHEN Hua, LIU Kai-Xin, ZHANG De-Liang 2011 Chin. Phys. Lett. 28 124705
Download: PDF(3213KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A genuinely three-dimensional spacetime conservation element and solution element (CE/SE) scheme is built as simple, consistent and straightforward extensions of an improved high resolution 2D CE/SE scheme. It is applied to examine the mechanism of three-dimensional detonation process in rectangular ducts. The simulations clearly show detailed three-dimensional detonation modes, namely a rectangular mode and a diagonal mode. Furthermore, the formation of unreacted pockets with high density and low temperature behind the detonation is observed for the two modes.
Keywords: 47.40.Rs      82.33.Vx      02.60.Cb     
Received: 25 July 2011      Published: 29 November 2011
PACS:  47.40.Rs (Detonation waves)  
  82.33.Vx (Reactions in flames, combustion, and explosions)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124705       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124705
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SHEN Hua
LIU Kai-Xin
ZHANG De-Liang
[1] Roy G D et al 2004 Prog. Energy Combust. Sci. 30 545
[2] Tsuboi N, Katoh S and Hayashi 2002 Prog. Combust. Inst. 29 2783
[3] Deledicque V and Papalexandris M V 2006 Combust. Flame 144 821
[4] Dou H S et al 2008 Combust. Flame 154 644
[5] Chang S C 1995 J. Comp. Phys. 119 295
[6] Chang S C et al 1999 J. Comput. Phys. 156 89
[7] Wang X Y et al 2000 AIAA 2000-0474
[8] Wang G et al 2007 Chin. Phys. Lett. 24 3563
[9] Wang G et al 2010 Chin. Phys. Lett. 27 024701
[10] Wang G et al 2010 Comput. Fluids 39 168
[11] Wang G et al 2011 Comput. Phys. Commun. 182 1589
[12] Wang J T et al 2009 Comput. Fluids 38 544
[13] Chen Q Y et al 2010 J. Comput. Phys. 2 29 7503
[14] Chen Q Y and Liu K X 2011 Chin. Phys. Lett. 28 064602
[15] Sichel M et al 2002 Proc. Roy. Soc. Londond A 458 49
[16] Hanana M et al 2001 Shock Waves 11 77
Related articles from Frontiers Journals
[1] S. S. Dehcheshmeh*,S. Karimi Vanani,J. S. Hafshejani. Operational Tau Approximation for the Fokker–Planck Equation[J]. Chin. Phys. Lett., 2012, 29(4): 124705
[2] CAI Jia-Xiang, MIAO Jun. New Explicit Multisymplectic Scheme for the Complex Modified Korteweg-de Vries Equation[J]. Chin. Phys. Lett., 2012, 29(3): 124705
[3] LI Zhi-Ming, JIANG Hai-Ying, HAN Yan-Bin, LI Jin-Ping, YIN Jian-Qin, ZHANG Jin-Cheng. Temperature Uniformity of Wafer on a Large-Sized Susceptor for a Nitride Vertical MOCVD Reactor[J]. Chin. Phys. Lett., 2012, 29(3): 124705
[4] LI Shao-Wu, WANG Jian-Ping. Finite Spectral Semi-Lagrangian Method for Incompressible Flows[J]. Chin. Phys. Lett., 2012, 29(2): 124705
[5] LIU Shi-Jie**, LIN Zhi-Yong, SUN Ming-Bo, LIU Wei-Dong . Thrust Vectoring of a Continuous Rotating Detonation Engine by Changing the Local Injection Pressure[J]. Chin. Phys. Lett., 2011, 28(9): 124705
[6] Seoung-Hwan Park**, Yong-Tae Moon, Jeong Sik Lee, Ho Ki Kwon, Joong Seo Park, Doyeol Ahn . Optical Gain Analysis of Graded InGaN/GaN Quantum-Well Lasers[J]. Chin. Phys. Lett., 2011, 28(7): 124705
[7] LV Zhong-Quan, XUE Mei, WANG Yu-Shun, ** . A New Multi-Symplectic Scheme for the KdV Equation[J]. Chin. Phys. Lett., 2011, 28(6): 124705
[8] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 124705
[9] DONG He-Fei, HONG Tao**, ZHANG De-Liang . Application of the CE/SE Method to a Two-Phase Detonation Model in Porous Media[J]. Chin. Phys. Lett., 2011, 28(3): 124705
[10] R. Mokhtari**, A. Samadi Toodar, N. G. Chegini . Numerical Simulation of Coupled Nonlinear Schrödinger Equations Using the Generalized Differential Quadrature Method[J]. Chin. Phys. Lett., 2011, 28(2): 124705
[11] XIONG Tao, ZHANG Peng**, WONG S. C., SHU Chi-Wang, ZHANG Meng-Ping . A Macroscopic Approach to the Lane Formation Phenomenon in Pedestrian Counterflow[J]. Chin. Phys. Lett., 2011, 28(10): 124705
[12] SUN Xiao-Hui, CHEN Zhi-Hua**, ZHANG Huan-Hao . MHD Control of Oblique Detonation Waves[J]. Chin. Phys. Lett., 2011, 28(1): 124705
[13] A. Zerarka**, O. Haif-Khaif, K. Libarir, A. Attaf . Numerical Modeling for Generating the Bound State Energy via a Semi Inverse Variational Method Combined with a B-Spline Type Basis[J]. Chin. Phys. Lett., 2011, 28(1): 124705
[14] Syed Tauseef Mohyud-Din**, Ahmet Yιldιrιm. Numerical Solution of the Three-Dimensional Helmholtz Equation[J]. Chin. Phys. Lett., 2010, 27(6): 124705
[15] SHAO Ye-Tao, WANG Jian-Ping. Change in Continuous Detonation Wave Propagation Mode from Rotating Detonation to Standing Detonation[J]. Chin. Phys. Lett., 2010, 27(3): 124705
Viewed
Full text


Abstract