Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124704    DOI: 10.1088/0256-307X/28/12/124704
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Wake Oscillator Model Proposed for the Stream-Wise Vortex-Induced Vibration of a Circular Cylinder in the Second Excitation Region
XU Wan-Hai**, DU Jie, YU Jian-Xing, LI Jing-Cheng
Key Laboratory of Port and Ocean Engineering, Tianjin University, Tianjin 300072
Cite this article:   
XU Wan-Hai, DU Jie, YU Jian-Xing et al  2011 Chin. Phys. Lett. 28 124704
Download: PDF(545KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A wake oscillator model is presented for the stream-wise vortex-induced vibration of a circular cylinder in the second excitation region. The near wake dynamics related to the fluctuating nature of alternate vortex shedding is modeled based on the classical van der Pol equation. An appropriate approach used in cross-flow VIV is developed to estimate the model empirical parameters. The comparison between our calculations and experiments is carried out to validate the proposed model. It is found that the present model results agree fairly well with the experimental data.
Keywords: 47.32.Cc      47.85.Dh      47.11.+j     
Received: 30 August 2011      Published: 29 November 2011
PACS:  47.32.Cc  
  47.85.Dh (Hydrodynamics, hydraulics, hydrostatics)  
  47.11.+j  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124704       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124704
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XU Wan-Hai
DU Jie
YU Jian-Xing
LI Jing-Cheng
[1] Sarpkaya T 2004 J. Fluids Structures 19 389
[2] Naudascher E 1987 J. Fluids Structures 1 265
[3] Okajima A, Kosugi T and Nakamura A 2002 ASME J. Pressure Vessel Technol. 124 89
[4] Matsuda K, Uejima H and Sugimoto T 2003 J. Wind Engin. Industrial Aerodynamics 91 83
[5] Okajima A, Nakamura A, Kosugi T, Uchida H and Tamaki R 2004 Eur. J. Mech. B Fluids 23 115
[6] Currie I G and Turnbull D H 1987 J. Fluids Structures 1 185
[7] Facchinetti M L, de Langre E and Biolley F 2004 J. Fluids Structures 19 123
[8] Furnes G K and Sorensen K 2007 Proceedings of the 17th International Offshore and Polar Engineering Conference (Lisbon, Portugal: ISOPE) 2781
[9] King R 1977 Ocean Engin. 4 141
[10] Finn L, Lambrakos K and Maher J 1999 Proceedings of the Fourth International Conference on Advances (Aberdeen Scotland: Riser Technologies)
[11] Xu W H, Wu Y X, Zeng X H, ZHONG X F and YU J X 2010 J. Hydrodyn. 22 381
[12] Nobari M R H and Naderan H 2006 Computers and Fluids 35 393
[13] Hall MS and Griffin OM 1993 Trans ASME, J. Fluids Engin. 115 283
[14] Griffin O M and Ramberg S E 1976 J. Fluid Mech. 75 257
[15] Nakamura A, Okajima A and Kosugi T 2001 JSME Int. J. B 44 705
[16] Matsuda K, Uejima H and Sugimoto T 2003 J. Wind Engin. Industrial Aerodynamics 91 83
[17] Okajima A, Kosugi T and Nakamura A 2001 JSME Int. J. B 44 695
Related articles from Frontiers Journals
[1] SHI Lei**,XIONG Wei,GAO Shu-Sheng. The Effect of Gas Leaks on Underground Gas Storage Performance During Development and Operation[J]. Chin. Phys. Lett., 2012, 29(4): 124704
[2] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. Simulation of Non-Newtonian Blood Flow by Lattice Boltzman Method[J]. Chin. Phys. Lett., 2010, 27(9): 124704
[3] JI Yu-Pin, KANG Xiu-Ying, LIU Da-He. The Blood Flow at Arterial Bifurcations Simulated by the Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2009, 26(7): 124704
[4] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, LI Hua-Bing. Lattice Boltzmann Simulations of Particle-Particle Interaction in Steady Poiseuille Flow[J]. Chin. Phys. Lett., 2009, 26(4): 124704
[5] DAI Zheng-De, XIAN Da-Quan, LI Dong-Long. Homoclinic Breather-Wave with Convective Effect for the (1+1)-Dimensional Boussinesq Equation[J]. Chin. Phys. Lett., 2009, 26(4): 124704
[6] YI Hou-Hui, FAN Li-Juan, YANG Xiao-Feng, CHEN Yan-Yan. Effect of Rolling Massage on Particle Moving Behaviour in Blood Vessels[J]. Chin. Phys. Lett., 2008, 25(9): 124704
[7] LAI Hui-Lin, MA Chang-Feng,. An Implicit Scheme of Lattice Boltzmann Method for Sine-Gordon Equation[J]. Chin. Phys. Lett., 2008, 25(6): 124704
[8] DAI Zheng-De, LIU Zhen-Jiang, LI Dong-Long. Exact Periodic Solitary-Wave Solution for KdV Equation[J]. Chin. Phys. Lett., 2008, 25(5): 124704
[9] LI Dong-Long, DAI Zheng-De, GUO Yan-Feng. Periodic Homoclinic Wave of (1+1)-Dimensional Long--Short Wave Equation[J]. Chin. Phys. Lett., 2008, 25(12): 124704
[10] QI Mei-Lan, HE Hong-Liang, YAN Shi-Lin. Effect of Temperature on the Void Growth in Pure Aluminium at High Strain-Rate Loading[J]. Chin. Phys. Lett., 2007, 24(8): 124704
[11] LI Hua-Bing, ZHANG Chao-Ying, LU Xiao-Yang, FANG Hai-Ping. An Effective Method on Two-Dimensional Lattice Boltzmann Simulations with Moving Boundaries[J]. Chin. Phys. Lett., 2007, 24(12): 124704
[12] MA Chang-Feng, , SHI Bao-Chang. Lattice Bhatnagar--Gross--Krook Simulations of Hydromagnetic Double-Diffusive Convection in a Rectangular Enclosure with Opposing Temperature and Concentration Gradients[J]. Chin. Phys. Lett., 2006, 23(7): 124704
[13] LU Xiao-Yang, YI Hou-Hui, CHEN Ji-Yao, FANG Hai-Ping. Lattice BGK Simulations of the Blood Flow in Elastic Vessels[J]. Chin. Phys. Lett., 2006, 23(3): 124704
[14] CHEN Sheng, LIU Zhao-Hui, HE Zhu, ZHANG Chao, TIAN Zhi-Wei, SHI Bao-Chang, ZHENG Chu-Guang. A Novel Lattice Boltzmann Model For Reactive Flows with Fast Chemistry[J]. Chin. Phys. Lett., 2006, 23(3): 124704
[15] KANG Xiu-Ying, LIU Da-He, ZHOU Jing, JIN Yong-Juan. Simulating High Reynolds Number Flow by Lattice Boltzmann Method[J]. Chin. Phys. Lett., 2005, 22(6): 124704
Viewed
Full text


Abstract