Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124702    DOI: 10.1088/0256-307X/28/12/124702
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Renormalization Group Analysis of Weakly Rotating Turbulent Flows
WANG Xiao-Hong**, ZHOU Quan
Department of Thermal Science and Energy Engineering, University of Science and Technology of China, Hefei 230026
Cite this article:   
WANG Xiao-Hong, ZHOU Quan 2011 Chin. Phys. Lett. 28 124702
Download: PDF(491KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Dynamic renormalization group (RNG) analysis is applied to the investigation of the behavior of the infrared limits of weakly rotating turbulence. For turbulent flow subject to weak rotation, the anisotropic part in the renormalized propagation is considered to be a perturbation of the isotropic part. Then, with a low-order approximation, the coarsening procedure of RNG transformation is performed. After implementing the coarsening and rescaling procedures, the RNG analysis suggests that the spherically averaged energy spectrum has the scaling behavior E(k)k−11/5 for weakly rotating turbulence. It is also shown that the Coriolis force will disturb the stability of the Kolmogorov −5/3 energy spectrum and will change the scaling behavior even in the case of weak rotation.
Keywords: 47.27.em      05.10.Cc     
Received: 11 August 2011      Published: 29 November 2011
PACS:  47.27.em (Eddy-viscosity closures; Reynolds stress modeling)  
  05.10.Cc (Renormalization group methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124702       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124702
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Xiao-Hong
ZHOU Quan
[1] Zeman O 1994 Phys. Fluids 6 3221
[2] Zhou Y 1995 Phys. Fluids 7 2092
[3] Mahalov A and Zhou Y 1996 Phys. Fluids 8 2138
[4] Yeung P K and Zhou Y 1998 Phys. Fluids 10 2895
[5] Baroud C N, Plapp BB, She Z S and Swinney H L 2002 Phys. Rev. Lett. 88 114501
[6] Cambon C, Mansour N N and Godeferd F S 1997 J. Fluid Mech. 337 303
[7] Cambon C, Rubinstein R and Godeferd F S 2004 New J. Phys. 6 73
[8] Bellet F, Godeferd F S, Scott J F and Cambon C 2006 J. Fluid Mech. 562 83
[9] Smith L M and Waleffe F 1999 Phys. Fluids 11 1608
[10] Yang X and Domaradzki J A 2004 Phys. Fluids 16 4088
[11] Smith L M and Lee Y 2005 J. Fluid Mech. 535 111
[12] Thiele M and Muller W C 2009 J. Fluid Mech. 637 425
[13] Morize C, Moisy F and Rabaud M 2005 Phys. Fluids 17 095105
[14] Seiwert J, Morize C and Moisy F 2008 Phys. Fluids 20 071702
[15] Forster D, Nelson D R and Stephen M J 1977 Phys. Rev. A 16 732
[16] Yakhot V and Orszag S A 1986 J. Sci. Comput. 1 3
[17] Zhou Y 2010 Phys. Rep. 488 1
[18] Rubinstein R and Barton J M 1987 Phys. Fluids 30 2987
[19] Carati D and Brenig L 1989 Phys. Rev. A 40 5193
[20] Wang X H and Wu F 1993 Phys. Rev. E 48 R37
[21] Liu Z F and Wang X H 2008 Chin. Phys. Lett. 25 604
Related articles from Frontiers Journals
[1] WANG Xian-Ju, LI Hai, LI Xin-Fang, WANG Zhou-Fei**, LIN Fang . Stability of TiO2 and Al2O3 Nanofluids[J]. Chin. Phys. Lett., 2011, 28(8): 124702
[2] WANG Meng-Xiong, CAI Jian-Wei, XIE Zhi-Yuan, CHEN Qiao-Ni, ZHAO Hui-Hai, WEI Zhong-Chao. Investigation of the Potts Model on Triangular Lattices by the Second Renormalization of Tensor Network States[J]. Chin. Phys. Lett., 2010, 27(7): 124702
[3] TU Tao, WANG Lin-Jun, HAO Xiao-Jie, GUO Guang-Can, GUO Guo-Ping. Renormalization Group Method for Soliton Evolution in a Perturbed KdV Equation[J]. Chin. Phys. Lett., 2009, 26(6): 124702
[4] WANG Xian-Ju, LI Xin-Fang. Influence of pH on Nanofluids' Viscosity and Thermal Conductivity[J]. Chin. Phys. Lett., 2009, 26(5): 124702
[5] LIU Zheng-Feng, WANG Xiao-Hong,. Derivation of a Nonlinear Reynolds Stress Model Using Renormalization Group Analysis and Two-Scale Expansion Technique[J]. Chin. Phys. Lett., 2008, 25(2): 124702
Viewed
Full text


Abstract