Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124206    DOI: 10.1088/0256-307X/28/12/124206
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Compact and Highly Efficient Passively Q−Switched Intracavity KTA-OPO at 1.53 and 3.47 µm
MIAO Jie-Guang**, PAN Yu-Zhai, QU Shi-Liang
Department of Optoelectronics Science, Harbin Institute of Technology (Weihai Campus), Weihai 264209
Cite this article:   
MIAO Jie-Guang, PAN Yu-Zhai, QU Shi-Liang 2011 Chin. Phys. Lett. 28 124206
Download: PDF(671KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Both the signal (1.53 µm ) and idler (3.47 µm ) performances of a KTA−based optical parametric oscillator (OPO) are presented. The KTA-OPO is intracavity driven by a diode-pumped Nd:YVO4/Cr:YAG passively Q−switched laser with a quite compact configuration. The signal and idler average output powers up to 941 and 583 mW, respectively, have been achieved, corresponding to an improved diode-to-idler conversion efficiency of 6.5% and a diode-to-OPO (signal+idler) conversion efficiency of 16.9%. At different pump levels, the signal pulse duration and repetition rate are detected to be in the range of 1.8–3.2 ns and 13–112 kHz, respectively. Moreover, near diffraction limited and Gaussian type beam profiles at 1.53 and 3.47 µm are also observed.
Keywords: 42.55.Xi      42.60.Gd      42.60.Lh      42.65.Yj     
Received: 28 July 2011      Published: 29 November 2011
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Gd (Q-switching)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.65.Yj (Optical parametric oscillators and amplifiers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124206       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124206
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
MIAO Jie-Guang
PAN Yu-Zhai
QU Shi-Liang
[1] Mirov S, Fedorov V, Moskalev I, Martyshkin D and Kim C 2010 Laser Photon. Rev. 4 21
[2] Zhu G L, Ju Y L, Wang T H and Wang Y Z 2009 Chin. Phys. Lett. 26 034208
[3] DeLoach L D, Page R HL, Wilke G D, Payne S A and Krupke W F 1996 IEEE J. Quantum Elect. 32 885
[4] Mirov S B, Fedorov V V, Martyshkin D V, Moskalev I S, Mirov M S and Gapontsev V P 2011 Opt. Mater. Express 1 898
[5] Huang H T, He J L, Yang J F, Zhang B T, Xu J L and Liu S D 2010 Appl. Phys. B 100 471
[6] Chen Y F, Su K W, Chang Y T and Yen W C 2007 Appl. Opt. 46 3597
[7] Zhuang W Z, Huang W C, Huang Y P, Su K W and Chen Y F 2010 Opt. Express 18 8969
[8] Xiong B, Zhang S B, Guo L, Zhang L, Lin X C and Li J M 2010 Chin. Phys. Lett. 27 014206
[9] Henriksson M, Sjöqvist L, Pasiskevicius V and Laurell F 2007 Appl. Phys. B 86 497
[10] Lindsay I, Stothard D, Rae C and Dunn M 2003 Opt. Express 11 134
[11] Yan B X, Bi Y, Zhou M, Wang D D, Qi Y, Fang T, Wang B, Wang Y W, Zheng G and Cheng H 2010 Chin. Phys. Lett. 27 124203
[12] Sorokina I T and Vodopyanov K L 2003 Solid-State Mid-infrared Laser Sources (Berlin: Springer-Verlag) p 141
[13] Bosenberg W R, Cheng L K and Bierlein J D 1994 Appl. Phys. Lett. 65 2765
[14] Liu Z, Wang Q, Zhang X, Liu Z, Chang J, Wang H, Fan S, Sun W, Jin G, Tao X, Zhang S and Zhang H 2008 Appl. Phys. B 92 37
[15] Zhu H, Zhang G, Chen H, Huang C, Wei Y, Duan Y, Huang Y, Wang H and Qiu G 2009 Opt. Express 17 20669
[16] Zhong K, Yao J Q, Xu D G, Wang J L, Li J S and Wang P 2010 Appl. Phys. B 100 749
[17] Huang H T, He J L, Dong X L, Zuo C H, Zhang B T, Qiu G and Liu Z K 2008 Appl. Phys. B 90 43
[18] Zhong K, Li J S, Cui H X, Xu D G, Wang Y Y, Zhou R, Wang J L, Wang P and Yao J Q 2009 Chin. Phys. Lett. 26 124213
[19] Dong X L, Zhang B T, He J L, Huang H T, Yang K J, Xu J L, Zuo C H, Zhao S, Qiu G and Liu Z K 2009 Opt. Commun. 282 1668
[20] Debuisschert T, Raffy J, Pocholle J P and Papuchon M J. Opt. Soc. Am. B 13 1569
[21] Xiao G, Bass M and Acharekar M 1998 IEEE J. Quantum Electron. 34 2241
[22] Sutherland R L 2003 Handbook of Nonlinear Optics 2nd edn (New York: Marcel Dekker) p 122
[23] Koechner W 2006 Solid-State Laser Engineering 6th edn (Berlin: Springer-Verlag) p 215
Related articles from Frontiers Journals
[1] ZHOU Ren-Lai, ZHAO Jie, YUANG-Chi, CHEN Zhao-Yu, JU You-Lun, WANG Yue-Zhu. All-Fiber Gain-Switched Thulium-Doped Fiber Laser Pumped by 1.558μm Laser[J]. Chin. Phys. Lett., 2012, 29(6): 124206
[2] ZHOU Zhi-Chao, TIAN Xue-Ping, DAI Qi-Biao, HAN Wen-Juan, HUANG Jia-Yin, LIU Jun-Hai, ZHANG Huai-Jin. The Laser Action of a Yb:CLNGG Crystal with an Efficiency Approaching Its Quantum Defect Imposed Limit[J]. Chin. Phys. Lett., 2012, 29(6): 124206
[3] LIU Qin,LIU Jian-Li,JIAO Yue-Chun,FENG Jin-Xia,ZHANG Kuan-Shou**. A Stable 22-W Low-Noise Continuous-Wave Single-Frequency Nd:YVO4 Laser at 1.06 µm Directly Pumped by a Laser Diode[J]. Chin. Phys. Lett., 2012, 29(5): 124206
[4] YANG Jing,DU Shi-Feng,ZHANG Jing-Yuan,*,CAO Dong,CUI Da-Fu,PENG Qin-Jun,XU Zu-Yan*. Tomographic Imaging and Three-Dimensional Reconstruction Based on a High-Gain Optical Parametric Amplifier[J]. Chin. Phys. Lett., 2012, 29(5): 124206
[5] JIANG Man,ZHANG Qiu-Lin,ZHOU Wen-Jia,ZHANG Jing,ZHANG Dong-Xiang,FENG Bao-Hua**. Self-Q-Switched and Mode-Locked Cr,Nd:YAG Laser under Direct 885 nm Diode Laser Pumping[J]. Chin. Phys. Lett., 2012, 29(5): 124206
[6] REN Cheng**,YANG Xing-Tuan,ZHANG Shu-Lian. Absolute Angular Displacement Determination Based on Laser-Frequency Splitting Technology[J]. Chin. Phys. Lett., 2012, 29(5): 124206
[7] DU Ming-Di,SUN Jun-Qiang**,CHENG Wen-Long. THz Output Improvement in a Photomixer with a Resonant-Cavity-Enhanced Structure[J]. Chin. Phys. Lett., 2012, 29(4): 124206
[8] ZHENG Yao-Hui**,WANG Ya-Jun,PENG Kun-Chi. A High-Power Single-Frequency 540 nm Laser Obtained by Intracavity Frequency Doubling of an Nd:YAP Laser[J]. Chin. Phys. Lett., 2012, 29(4): 124206
[9] CAO Dong,DU Shi-Feng**,PENG Qin-Jun,BO Yong,XU Jia-Lin,GUO Ya-Ding,ZHANG Jing-Yuan,CUI Da-Fu,XU Zu-Yan. A 171.4 W Diode-Side-Pumped Q-Switched 2 µm Tm:YAG Laser with a 10 kHz Repetition Rate[J]. Chin. Phys. Lett., 2012, 29(4): 124206
[10] YAO Bao-Quan, DUAN Xiao-Ming, YU Zheng-Ping, WANG Yue-Zhu. Actively Q−Switched Laser Performance of Holmium-Doped Lu2SiO5 Crystal[J]. Chin. Phys. Lett., 2012, 29(3): 124206
[11] YAN Ying, FAN Zhong-Wei, NIU Gang, YU Jin, ZHANG Heng-Li. A 46-W Laser Diode Stack End-Pumped Slab Amplifier with a Pulse Duration of Picoseconds[J]. Chin. Phys. Lett., 2012, 29(3): 124206
[12] SHEN Ying-Jie, YAO Bao-Quan, DAI Tong-Yu, LI-Gang, DUAN Xiao-Ming, JU You-Lun, WANG Yue-Zhu. Performance of a c− and a-Cut Ho:YAP Laser at Room Temperature[J]. Chin. Phys. Lett., 2012, 29(3): 124206
[13] ZHENG Yi-Bo, YAO Jian-Quan, ZHANG Lei, WANG Yuan, WEN Wu-Qi, JING Lei, DI Zhi-Gang. Three-Dimensional Thermal Analysis of 18-Core Photonic Crystal Fiber Lasers[J]. Chin. Phys. Lett., 2012, 29(2): 124206
[14] ZHU Guo-Li, JU You-Lun, YAO Bao-Quan, WANG Yue-Zhu. A Dual-Crystal Cavity Ho,Tm:GdVO4 Laser[J]. Chin. Phys. Lett., 2012, 29(2): 124206
[15] YU Yong-Ji, CHEN Xin-Yu, WANG Chao, WU Chun-Ting, LIU Rui, JIN Guang-Yong. A 200 kHz Q-Switched Adhesive-Free Bond Composite Nd:YVO4 Laser using a Double-Crystal RTP Electro-optic Modulator[J]. Chin. Phys. Lett., 2012, 29(2): 124206
Viewed
Full text


Abstract