Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 124102    DOI: 10.1088/0256-307X/28/12/124102
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Transmission Characteristics of a Generalized Parallel Plate Dielectric Waveguide at THz Frequencies
YE Long-Fang1,2**, XU Rui-Min1, ZHANG Yong1,2, LIN Wei-Gan1
1Extra High Frequency Key Laboratory of Fundamental Science, School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu 611731
2National Key Laboratory of Monolithic Integrated Circuits and Modules, Nanjing 210016
Cite this article:   
YE Long-Fang, XU Rui-Min, ZHANG Yong et al  2011 Chin. Phys. Lett. 28 124102
Download: PDF(584KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A generalized parallel-plate dielectric waveguide (G-PPDW) is proposed as a new guiding medium for terahertz wave. A theoretical analysis of the transmission characteristics for the TE modes of this generalized structure is performed. Equations are presented for the field components, dispersion, power ratio, transmission loss and characteristic impedance as functions of the operating frequencies, dimensions and material constants. In the case of the lowest-order mode TE10, design curves covering frequencies and dimensions for the given material constants in the THz region are presented. The theoretical results of transmission characteristics obtained from these equations are verified by the finite-element method with a good agreement. The investigation results show that by selecting proper dimensions and dielectric materials, G-PPDW can be used to guide THz waves efficiently with high power confinement and low attenuation. These outstanding properties may open up a way to many important applications for THz integrated circuits and systems.
Keywords: 41.20.Jb      42.79.Gn      84.40.Az     
Received: 08 June 2011      Published: 29 November 2011
PACS:  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.79.Gn (Optical waveguides and couplers)  
  84.40.Az (Waveguides, transmission lines, striplines)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/124102       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/124102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YE Long-Fang
XU Rui-Min
ZHANG Yong
LIN Wei-Gan
[1] Siegel P H 2002 IEEE Trans. Microw. Theory Tech. 50 910
[2] Schmuttenmaer A 2004 Chem. Rev. 104 1759
[3] Woolard D L et al 2005 Proc. IEEE 93 1722
[4] Mendis R 2006 Electron. Lett. 42 19
[5] Jamison S P et al 2000 Appl. Phys. Lett. 76 1987
[6] Han H et al 2002 Appl. Phys. Lett. 80 2634
[7] Wang K and Mittleman D M 2004 Nature 432 376
[8] Chen D and Chen H 2010 Opt. Express 18 3762
[9] Ye L F et al 2010 Opt. Express 18 21725
[10] Ye L F et al 2011 Opt. Express 19 18910
[11] Yeh C and Shimabukuro F 2008 The Essence of Dielectric Waveguides (Springer: Berlin)
[12] Yeh C et al 2005 Appl. Opt. 44 5937
Related articles from Frontiers Journals
[1] ZHOU Hai-Chun, YANG Guang, WANG Kai, LONG Hua, LU Pei-Xiang. Coupled Optical Tamm States in a Planar Dielectric Mirror Structure Containing a Thin Metal Film[J]. Chin. Phys. Lett., 2012, 29(6): 124102
[2] ZHANG Li-Wei, ZHANG Ye-Wen, HE Li, WANG You-Zhen. Experimental Study of Tunneling modes in Photonic Crystal Heterostructure Consisting of Single-Negative Materials[J]. Chin. Phys. Lett., 2012, 29(6): 124102
[3] CHENG Mu-Tian,SONG Yan-Yan,YU Long-Bao**. Transmission Characteristics in a Coupled-Resonator Waveguide Interacting with a Two-Mode Nanocavity Containing a Three-Level Emitter[J]. Chin. Phys. Lett., 2012, 29(5): 124102
[4] MA Zhi, CAO Chen-Tao, LIU Qing-Fang, WANG Jian-Bo. A New Method to Calculate the Degree of Electromagnetic Impedance Matching in One-Layer Microwave Absorbers[J]. Chin. Phys. Lett., 2012, 29(3): 124102
[5] WANG Jia-Fu, QU Shao-Bo, XU Zhuo, MA Hua, WANG Cong-Min, XIA Song, WANG Xin-Hua, ZHOU Hang. Grating-Coupled Waveguide Cloaking[J]. Chin. Phys. Lett., 2012, 29(3): 124102
[6] KONG Qi, SHI Qing-Fan, YU Guang-Ze, ZHANG Mei. A New Method for Electromagnetic Time Reversal in a Complex Environment[J]. Chin. Phys. Lett., 2012, 29(2): 124102
[7] LIANG Shi-Xiong, WU Zhao-Xin, ZHAO Xuan-Ke, HOU Xun. Escaped and Trapped Emission of Organic Light-Emitting Diodes[J]. Chin. Phys. Lett., 2012, 29(2): 124102
[8] XU He-Xiu**, WANG Guang-Ming, GONG Jian-Qiang. Compact Dual-Band Zeroth-Order Resonance Antenna[J]. Chin. Phys. Lett., 2012, 29(1): 124102
[9] ZHU Xue-Feng, ZOU Xin-Ye, ZHOU Xiao-Wei, LIANG Bin, CHENG Jian-Chun**. Concealing a Passive Sensing System with Single-Negative Layers[J]. Chin. Phys. Lett., 2012, 29(1): 124102
[10] SUN Xiao-Qiang, CHEN Chang-Ming, LI Xiao-Dong, WANG Xi-Bin, YANG Tian-Fu, ZHANG Da-Ming, WANG Fei**, XIE Zhi-Yuan**. Polymer Electro-optic Modulator Linear Bias Using the Thermo-optic Effect[J]. Chin. Phys. Lett., 2012, 29(1): 124102
[11] JING Lei, **, YAO Jian-Quan, . Single Mode Condition and Power Fraction of Air-Cladding Total Refractive Guided Porous Polymer Terahertz Fibers[J]. Chin. Phys. Lett., 2011, 28(8): 124102
[12] ZHOU Jing-Tao**, SHEN Hua-Jun, YANG Cheng-Yue, LIU Huan-Ming, TANG Yi-Dan, LIU Xin-Yu . Compact 2×2 Multi-Mode Interference Couplers with Uneven Splitting-Ratios Based on Silicon Nanowires[J]. Chin. Phys. Lett., 2011, 28(8): 124102
[13] LUO Ya-Qin**, SONG Yan-Yan, GU Ling-Ming, LANG Jia-Hong, MA Xiao-San . Voltage-Controlled Scattering of Single Photons in a One-Dimensional Waveguide[J]. Chin. Phys. Lett., 2011, 28(7): 124102
[14] Cumali Sabah . Refraction Characteristics of Cold Plasma Thin Film as a Left-Handed Metamaterial[J]. Chin. Phys. Lett., 2011, 28(6): 124102
[15] GU Chao, QU Shao-Bo, **, PEI Zhi-Bin, MA Hua, XU Zhuo, BAI Peng, PENG Wei-Dong, LIN Bao-Qin . A Wide-Band Metamaterial Absorber Based on Loaded Magnetic Resonators[J]. Chin. Phys. Lett., 2011, 28(6): 124102
Viewed
Full text


Abstract