ATOMIC AND MOLECULAR PHYSICS |
|
|
|
|
Lattice-Inversion Embedded-Atom-Method Interatomic Potentials for Group-VA Transition Metals |
YUAN Xiao-Jian1,2**, CHEN Nan-Xian1,3, SHEN Jiang1
|
1Institute for Applied Physics, University of Science and Technology Beijing, Beijing 100083
2Department of Applied Physics, Hunan University, Changsha 410082
3Department of Physics, Tsinghua University, Beijing 100084
|
|
Cite this article: |
YUAN Xiao-Jian, CHEN Nan-Xian, SHEN Jiang 2011 Chin. Phys. Lett. 28 123402 |
|
|
Abstract The lattice-inversion embedded-atom-method (LI-EAM) interatomic potential we developed previously [J. Phys.: Condens. Matter 22 (2010) 375503] is extended to group-VA transition metals (V, Nb and Ta). It is found that considering interatomic interactions up to appropriate-distance-neighbor atoms is crucial to constructing accurate EAM potentials, especially for the prediction of surface energy. The LI-EAM interatomic potentials for group-VA transition metals are successfully built by considering interatomic interactions up to the fifth neighbor atoms. These angular-independent potentials drastically promote the accuracy of the predicted surface energies, which match the experimental results well.
|
Keywords:
34.20.Cf
61.66.Bi
68.35.Md
61.72.Jd
|
|
Received: 24 July 2011
Published: 29 November 2011
|
|
|
|
|
|
[1] Carlsson A E et al 1980 Philos. Mag. A 41 241
[2] Chen N X et al 1997 Phys. Rev. E 55 R5
[3] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[4] Yuan X J, Chen N X et al 2010 J. Phys.: Condens. Matter 22 375503
[5] Banerjea A et al 1988 Phys. Rev. B 37 6632
[6] Guellil A M et al 1992 J. Mater. Res. 7 639
[7] Fellinger M R et al 2010 Phys. Rev. B 81 144119
[8] Li Y et al 2003 Phys. Rev. B 67 125101
[9] Hu W Y et al 2002 Comput. Mater. Sci. 23 175
[10] Ackland G J et al 1986 Philos. Mag. A 54 301
[11] Dai X D et al 2007 Phys. Rev. B 75 052102
[12] Rose J H et al 1984 Phys. Rev. B 29 2963
[13] Barrett C S et al 1980 Structure of Metals 3rd (New York: Pregamon) p 629
[14] Kittle C 1976 Introduction to Solid state Physics 5th (New York: Wiley) p 74
[15] Levy M et al 2001 Handbook of Elastic Properties of Solids, Liquids and Gases (New York: Academic) vol 2 p 99
[16] Dinsdale A T 1991 CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 15 317
[17] Baskes M I 1997 Mater. Chem. Phys. 50 152
[18] Vitos L et al 1998 Surf. Sci. 411 186
[19] Mezey M I et al 1982 Jpn. J. Appl. Phys. Part I 21 1569
[20] Baskes M I 1992 Phys. Rev. B 46 2727 and references therein
[21] Lee B J et al 2001 Phys. Rev. B 64 184102
[22] Baskes M I 1992 Phys. Rev. B 46 2727
[23] Li J H et al 2007 Phys. Rev. B 76 104101
[24] Foiles S M et al 1986 Phys. Rev. B 33 7983
[25] Sundquist B E 1964 Acta Metall. 12 67
[26] Grenga H E et al 1976 Surf. Sci. 61 283
[27] Wang Y R et al 1995 J. Appl. Phys. 78 122
[28] Zope R R aet al 2003 Phys. Rev. B 68 024102
[29] Baskes M I et al 2007 Phys. Rev. B 75 094113
[30] Mishin Y et al 2010 Acta Mater. 58 1117
[31] Zhang B et al 1999 Physica B 262 218 and references therein
[32] Jannot C et al 1982 J. Phys. F: Met. Phys. 12 47
[33] Siegel R W 1982 Proc. Yamada Conf. On Point Defects and Defect Interactions in Metals ed Takamura J, Doyama M and Kiritani M (Tokyo: University of Tokyo Press) p 533
[34] Kraftmacher Y A 1977 Scripta Matall. 11 1033
[35] Schwirtlch I A et al 1980 Philos. Mag. A 42 613
[36] Brandes E A et al 1992 Smithells Metals Reference Book 7th edn (Oxford: Butterworth-Heinemann)
[37] Maier K et al 1977 Phys. Rev. Lett. 39 484
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|