Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 121401    DOI: 10.1088/0256-307X/28/12/121401
THE PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Flavor State of the Neutrino: Conditions for a Consistent Definition
RONG Shu-Jun**, LIU Qiu-Yu
Department of Modern Physics, University of Science and Technology of China, Hefei 230026
Cite this article:   
RONG Shu-Jun, LIU Qiu-Yu 2011 Chin. Phys. Lett. 28 121401
Download: PDF(461KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Similar to Blasone et al. [Phys. Rev. D 72 (2005) 013003] by examining the expectation value of the flavor charge under the normalized flavor state of the neutrino, we demonstrate that the introduction of the flavor state is consistent with the flavor charge only when the conditions, i.e. (A) |p|=0 (the low energy case), or |p|/mi≫1 (the relativistic case) and (B) the flavor state should be defined of the Pontecorvo form |νe〉=cosθ|ν1〉+sinθ|ν2〉 or equivalently except a global phase, are satisfied. The root of the issue lies in the structure of the flavor charge operator. The diagonalization of the flavor charge operator with the integer eigenvalue can be realized through the Bogoliubov–Valatin transformation when condition A is satisfied. The eigenstate of the diagonalized flavor charge is of the Pontecorvo form under condition B.
Keywords: 14.60.Pq      03.70.+k      03.65.-w     
Received: 13 July 2011      Published: 29 November 2011
PACS:  14.60.Pq (Neutrino mass and mixing)  
  03.70.+k (Theory of quantized fields)  
  03.65.-w (Quantum mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/121401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/121401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
RONG Shu-Jun
LIU Qiu-Yu
[1] Reins F and Cowan C L Jr 1953 Phys. Rev. 92 830
[2] Lipkin H L 2006 Phys. Lett. B 642 366
[3] Bilenky S M et al arXiv:0804.3409 [hep-ph]
[4] Blasone M et al 2003 arXiv:hep-ph/0309202
[5] Blasone M et al 2005 Phys. Rev. D 72 013003
[6] Giunti C 2005 Eur. Phys. J. C 39 377
[7] Giunti C 2004 arXiv:hep-ph/0402217
[8] Cohen A G et al 2009 Phys. Lett. B 678 191
[9] Akhmedov E Kh and Smirnov A Yu arXiv:1008.2077 [hep-ph]
[10] Blasone M et al 2011 Phys. Lett. B 697 238
[11] Blasone M et al 1999 Phys. Lett. B 451 140
[12] Akhmedov E Kh and Kopp J 2010 J. High Energy Phys. 04 008
Related articles from Frontiers Journals
[1] Akpan N. Ikot. Solutions to the Klein–Gordon Equation with Equal Scalar and Vector Modified Hylleraas Plus Exponential Rosen Morse Potentials[J]. Chin. Phys. Lett., 2012, 29(6): 121401
[2] ZHOU Jun,SONG Jun,YUAN Hao,ZHANG Bo. The Statistical Properties of a New Type of Photon-Subtracted Squeezed Coherent State[J]. Chin. Phys. Lett., 2012, 29(5): 121401
[3] RONG Shu-Jun*,LIU Qiu-Yu. The Perturbed Puma Model[J]. Chin. Phys. Lett., 2012, 29(4): 121401
[4] A. I. Arbab. Transport Properties of the Universal Quantum Equation[J]. Chin. Phys. Lett., 2012, 29(3): 121401
[5] Ahmad Nawaz. Quantum State Tomography and Quantum Games[J]. Chin. Phys. Lett., 2012, 29(3): 121401
[6] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 121401
[7] ZHAI Zhi-Yuan, YANG Tao, PAN Xiao-Yin**. Exact Propagator for the Anisotropic Two-Dimensional Charged Harmonic Oscillator in a Constant Magnetic Field and an Arbitrary Electric Field[J]. Chin. Phys. Lett., 2012, 29(1): 121401
[8] Ciprian Dariescu, Marina-Aura Dariescu**. Chiral Fermion Conductivity in Graphene-Like Samples Subjected to Orthogonal Fields[J]. Chin. Phys. Lett., 2012, 29(1): 121401
[9] S. Ali Shan, **, A. Mushtaq . Role of Jeans Instability in Multi-Component Quantum Plasmas in the Presence of Fermi Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 121401
[10] NING Guo-Zhu**, WU Yuan-Bin*** . Neutrino Mass from a Higher-Dimensional Operator[J]. Chin. Phys. Lett., 2011, 28(6): 121401
[11] ZHANG Xue, ZHENG Tai-Yu**, TIAN Tian, PAN Shu-Mei** . The Dynamical Casimir Effect versus Collective Excitations in Atom Ensemble[J]. Chin. Phys. Lett., 2011, 28(6): 121401
[12] HOU Shen-Yong**, YANG Kuo . Properties of the Measurement Phase Operator in Dual-Mode Entangle Coherent States[J]. Chin. Phys. Lett., 2011, 28(6): 121401
[13] FAN Hong-Yi, ZHOU Jun, **, XU Xue-Xiang, HU Li-Yun . Photon Distribution of a Squeezed Chaotic State[J]. Chin. Phys. Lett., 2011, 28(4): 121401
[14] WANG Zhen, WANG He-Ping, WANG Zhi-Xi**, FEI Shao-Ming . Local Unitary Equivalent Consistence for n−Party States and Their (n-1)-Party Reduced Density Matrices[J]. Chin. Phys. Lett., 2011, 28(2): 121401
[15] WANG Ji-Suo, **, MENG Xiang-Guo, FAN Hong-Yi . A Family of Generalized Wigner Operators and Their Physical Meaning as Bivariate Normal Distribution[J]. Chin. Phys. Lett., 2011, 28(10): 121401
Viewed
Full text


Abstract