Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120508    DOI: 10.1088/0256-307X/28/12/120508
GENERAL |
Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems
LI Hai-Yan**, HU Yun-An
Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001
Cite this article:   
LI Hai-Yan, HU Yun-An 2011 Chin. Phys. Lett. 28 120508
Download: PDF(477KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A certain backstepping control is proposed for synchronization of a class of hyper-chaotic systems. Only two control inputs are used to realize synchronization between hyper-chaotic systems, and the control avoids the possible singularity in the virtual control design. In addition, the adaptive backstepping control is proposed for the synchronization when the system parameters are unknown. The proposed methods can be applied to a variety of chaos systems which can be described by the so-called cross-strict feedback form. Numerical simulations are given to demonstrate the efficiency of the proposed control schemes.
Keywords: 05.45.-a      05.45.Gg      02.30.Yy      47.52.+j     
Received: 02 May 2011      Published: 29 November 2011
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  02.30.Yy (Control theory)  
  47.52.+j (Chaos in fluid dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120508       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120508
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Hai-Yan
HU Yun-An
[1] Wu T and Chen M S 2002 Physica D 164 53
[2] Choon K A 2011 Chin. Phys. Lett. 28 100504
[3] Chen G 1999 Controlling Chaos and Bifurcations in Engineering Systems (Boca Raton: CRC Press)
[4] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[5] Zhu C X 2009 Appl. Math. Comput. 215 557
[6] Jia Q 2007 Phys. Lett. A 362 424
[7] Zhou X B et al 2009 Chaos Solitons Fractals 39 2477
[8] Zhou X B et al 2008 Appl. Math. Comput. 203 80
[9] Yoo W J et al 2010 Mod. Phys. Lett. B 24 979
[10] Wang X Y and Wang M J 2008 Int. J. Mod. Phys. B 22 4069
[11] Huang J 2008 Phys. Lett. A 372 4799
[12] Yu Y G and Zhang S C 2004 Chaos Solitons Fractals 21 643
[13] Wang C and Ge S S 2001 Int. J. Bifur. Chaos 11 1743
[14] Wang J et al 2007 Phys. Lett. A 369 452
[15] Zhang H et al 2005 Chaos Solitons Fractals 26 353
[16] Tan X H et al 2003 Chaos Solitons Fractals 16 37
[17] Bowong S and Kakmeni F M M 2004 Chaos Solitons Fractals 21 999
[18] Wang C C et al 2010 Commun. Nonlinear Sci. Numer. Simulat. 15 741
[19] Li Y et al 2005 Int. J. Bifur. Chaos 15 3367
[20] Yan Z 2005 Appl. Math. Comput. 168 1239
[21] Wu X Y et al 2008 Nonlinear Analysis 68 1346
[22] Xu Z D and Zhang S Y 2000 Proceedings of the 3rd World Congress on Intelligent Control and Automation (Hefei, China 28 June–2 July 2000) p 3399
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[2] ZHAI Liang-Jun, ZHENG Yu-Jun, DING Shi-Liang. Chaotic Dynamics of Triatomic Normal Mode Molecules[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[3] Salman Ahmad, YUE Bao-Zeng. Bifurcation and Stability Analysis of the Hamiltonian–Casimir Model of Liquid Sloshing[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[4] NIU Yao-Bin, WANG Zhong-Wei, DONG Si-Wei. Modified Homotopy Perturbation Method for Certain Strongly Nonlinear Oscillators[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[5] LIU Yan, LIU Li-Guang, WANG Hang. Study on Congestion and Bursting in Small-World Networks with Time Delay from the Viewpoint of Nonlinear Dynamics[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[6] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[7] YAN Yan-Zong, WANG Cang-Long, SHAO Zhi-Gang, YANG Lei. Amplitude Oscillations of the Resonant Phenomena in a Frenkel–Kontorova Model with an Incommensurate Structure[J]. Chin. Phys. Lett., 2012, 29(6): 120508
[8] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120508
[9] JIANG Jun**. An Effective Numerical Procedure to Determine Saddle-Type Unstable Invariant Limit Sets in Nonlinear Systems[J]. Chin. Phys. Lett., 2012, 29(5): 120508
[10] FANG Ci-Jun,LIU Xian-Bin**. Theoretical Analysis on the Vibrational Resonance in Two Coupled Overdamped Anharmonic Oscillators[J]. Chin. Phys. Lett., 2012, 29(5): 120508
[11] WEI Du-Qu, LUO Xiao-Shu, ZHANG Bo. Noise-Induced Voltage Collapse in Power Systems[J]. Chin. Phys. Lett., 2012, 29(3): 120508
[12] SUN Mei, CHEN Ying, CAO Long, WANG Xiao-Fang. Adaptive Third-Order Leader-Following Consensus of Nonlinear Multi-agent Systems with Perturbations[J]. Chin. Phys. Lett., 2012, 29(2): 120508
[13] REN Sheng, ZHANG Jia-Zhong, LI Kai-Lun. Mechanisms for Oscillations in Volume of Single Spherical Bubble Due to Sound Excitation in Water[J]. Chin. Phys. Lett., 2012, 29(2): 120508
[14] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 120508
[15] HUANG Jia-Min, TAO Wei-Ming**, XU Bo-Hou. Evaluation of an Asymmetric Bistable System for Signal Detection under Lévy Stable Noise[J]. Chin. Phys. Lett., 2012, 29(1): 120508
Viewed
Full text


Abstract