GENERAL |
|
|
|
|
Fractal Analysis of Transport Properties in a Sinai Billiard |
JIANG Guo-Hui1, ZHANG Yan-Hui1**, BIAN Hong-Tao1, XU Xue-You2
|
1College of Physics and Electronics, Shandong Normal University, Ji'nan 250014
2Information Research Institute, Shandong Academy of Sciences, Ji'nan 250014
|
|
Cite this article: |
JIANG Guo-Hui, ZHANG Yan-Hui, BIAN Hong-Tao et al 2011 Chin. Phys. Lett. 28 120507 |
|
|
Abstract Research contacting chaos with fractals is carried out. First, we employ the theoretical quarter Sinai billiard model to study its chaos by using the stationary expansion method. When the billiard is chaotic, the singular point shows self-similarity. We further utilize the method of simplified box counting to calculate the fractal dimension. The result evidently proves the self-similarity of the singular point before escaping from a potential well.
|
Keywords:
05.45.Df
05.45.Pq
73.23.Ad
|
|
Received: 22 July 2011
Published: 29 November 2011
|
|
|
|
|
|
[1] Wei H et al 2004 J. Hebei Institute of Technology 26 108
[2] Fu H L et al 2005 J. Yangzhou University (Natural Science Edition) 8 23
[3] Taylor R P et al 1997 Phys. Rev. Lett. 78 1955
[4] Guo W H et al 2006 J. Shandong Normal University (Natural Science) 21 64
[5] Schanz H et al 1995 Chaos, Solitons Fractals 5 1299
[6] Kaufman D L et al 1999 Am. J. Phys. 67 133
[7] Yin Z Y et al 2000 J. Changde Teacher's University (Natural Science Edition) 13 57
[8] Hao B L 1983 Prog. Phys. 3 329
[9] Ott E 1993 Chaos in Dynamical Systems (Cambridge: Cambridge University) pp 69–72 97–98
[10] Huckestein B et al 2000 Phys. Rev. Lett. 84 5504
[11] Ree S and Reichl L E 2002 Phys. Rev. E 65 055205
[12] Chen L and Shao R 2006 J. West Anhui University 22 38
[13] Li Y P et al 2010 J. Atom. Mol. Phys. 27 323
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|