Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120507    DOI: 10.1088/0256-307X/28/12/120507
GENERAL |
Fractal Analysis of Transport Properties in a Sinai Billiard
JIANG Guo-Hui1, ZHANG Yan-Hui1**, BIAN Hong-Tao1, XU Xue-You2
1College of Physics and Electronics, Shandong Normal University, Ji'nan 250014
2Information Research Institute, Shandong Academy of Sciences, Ji'nan 250014
Cite this article:   
JIANG Guo-Hui, ZHANG Yan-Hui, BIAN Hong-Tao et al  2011 Chin. Phys. Lett. 28 120507
Download: PDF(615KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Research contacting chaos with fractals is carried out. First, we employ the theoretical quarter Sinai billiard model to study its chaos by using the stationary expansion method. When the billiard is chaotic, the singular point shows self-similarity. We further utilize the method of simplified box counting to calculate the fractal dimension. The result evidently proves the self-similarity of the singular point before escaping from a potential well.
Keywords: 05.45.Df      05.45.Pq      73.23.Ad     
Received: 22 July 2011      Published: 29 November 2011
PACS:  05.45.Df (Fractals)  
  05.45.Pq (Numerical simulations of chaotic systems)  
  73.23.Ad (Ballistic transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120507       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120507
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
JIANG Guo-Hui
ZHANG Yan-Hui
BIAN Hong-Tao
XU Xue-You
[1] Wei H et al 2004 J. Hebei Institute of Technology 26 108
[2] Fu H L et al 2005 J. Yangzhou University (Natural Science Edition) 8 23
[3] Taylor R P et al 1997 Phys. Rev. Lett. 78 1955
[4] Guo W H et al 2006 J. Shandong Normal University (Natural Science) 21 64
[5] Schanz H et al 1995 Chaos, Solitons Fractals 5 1299
[6] Kaufman D L et al 1999 Am. J. Phys. 67 133
[7] Yin Z Y et al 2000 J. Changde Teacher's University (Natural Science Edition) 13 57
[8] Hao B L 1983 Prog. Phys. 3 329
[9] Ott E 1993 Chaos in Dynamical Systems (Cambridge: Cambridge University) pp 69–72 97–98
[10] Huckestein B et al 2000 Phys. Rev. Lett. 84 5504
[11] Ree S and Reichl L E 2002 Phys. Rev. E 65 055205
[12] Chen L and Shao R 2006 J. West Anhui University 22 38
[13] Li Y P et al 2010 J. Atom. Mol. Phys. 27 323
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 120507
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 120507
[3] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 120507
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120507
[5] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 120507
[6] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 120507
[7] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 120507
[8] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 120507
[9] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 120507
[10] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 120507
[11] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 120507
[12] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 120507
[13] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 120507
[14] ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran**, YANG Zhong-Xi, SUN Chun-Jing . Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt[J]. Chin. Phys. Lett., 2011, 28(12): 120507
[15] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 120507
Viewed
Full text


Abstract