Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120505    DOI: 10.1088/0256-307X/28/12/120505
GENERAL |
Hurst's Exponent Determination for Radial Distribution Functions of In, Sn and In-40 wt%Sn Melt
ZHOU Yong-Zhi1, LI Mei 1, GENG Hao-Ran1**, YANG Zhong-Xi1, SUN Chun-Jing2
1School of Materials Science and Engineering University of Jinan, Jinan 250022
2Shandong Transport Vocational College, Weifang 261206
Cite this article:   
ZHOU Yong-Zhi, LI Mei, GENG Hao-Ran et al  2011 Chin. Phys. Lett. 28 120505
Download: PDF(906KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Hurst's exponent of radial distribution functions (RDFs) within the short-range scope of In, Sn and In-40 wt%Sn melts are determined by the rescaled range analysis method. Hurst's exponents H are between 0.94 and 0.97, which display long−range dependence. Within short-range scope, the number of particles from a reference particle belongs to fractional Brownian motion. After RDF serials are randomly scrambled, Hurst's exponents all dramatically dropped, which proves long-range dependence. H irregularly varies as the temperature rises, but the change tendency is not consistent with the correlation radius rc.
Keywords: 05.45.Df      61.25.Mv     
Received: 26 July 2011      Published: 29 November 2011
PACS:  05.45.Df (Fractals)  
  61.25.Mv (Liquid metals and alloys)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120505       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120505
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHOU Yong-Zhi
LI Mei
GENG Hao-Ran
YANG Zhong-Xi
SUN Chun-Jing
[1] Kong D R and Xie H B 2011 Chin. Phys. Lett. 28 090502
[2] Kadir A, Wang X Y and Zhao Y Z 2011 Chin. Phys. Lett. 28 090503
[3] Hurst H E 1951 Trans. Am. Soc. Civil Eng. 116 770
[4] Hurst H E, Black R P and Simaika Y M 1965 Long-Term Storage: An Experimental Study (London: Constable)
[5] Mandelbrot B B 2002 Gaussian Self-Affinity and Fractals (New York: Springer)
[6] Lam W S, Ray W, Guzdar P N and Roy R 2005 Phys. Rev. Lett. 94 010602
[7] Yu Z G and Anh V 2001 Chaos, Solitons & Fractals 12 1827
[8] Zhuang J J, Ning X B, Yang X D, Hou F Z and Huo C Y 2008 Chinese Phys. B 17 852
[9] Sampaio A L, Lobão D C, Nunes L C S, dos Santos P A M, Silva L and Huguenin J A O 2011 Opt. Laser. Eng. 49 32
[10] Liu Q and Meng T C 2005 Phys. Rev. D 72 014011
[11] Ding G H and Zu F Q 2009 Phys. Lett. A 373 749
[12] Zu F Q, Zhu Z G, Guo L J, Qin X B, Yang H and Shan W J 2002 Phys. Rev. Lett. 89 125505
[13] Kaban I, Gruner S, Hoyer W, Il'inskii A and Shpak A 2007 J. Non-Cryst. Solids 353 1979
[14] Bai Y W, Bian X F, Qin X B, Qin J Y, Lv X Q and Sun J Z 2010 J. Non-Cryst. Solids 356 1823
[15] Elliott S R 1991 Nature 354 445
[16] Peters E E 1991 Chaos and Order in the Capital Markets: A New View of Cycles, Prices, and Market Volatility (New York: Wiley)
[17] Scheinkman J A and LeBaron B 1989 J. Business 62 311
Related articles from Frontiers Journals
[1] YUN Mei-Juan, ZHENG Wei. Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media[J]. Chin. Phys. Lett., 2012, 29(6): 120505
[2] WU Guo-Cheng, WU Kai-Teng. Variational Approach for Fractional Diffusion-Wave Equations on Cantor Sets[J]. Chin. Phys. Lett., 2012, 29(6): 120505
[3] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 120505
[4] SHANG Hui-Lin**, WEN Yong-Peng . Fractal Erosion of the Safe Basin in a Helmholtz Oscillator and Its Control by Linear Delayed Velocity Feedback[J]. Chin. Phys. Lett., 2011, 28(11): 120505
[5] SHANG Hui-Lin. Control of Fractal Erosion of Safe Basins in a Holmes–Duffing System via Delayed Position Feedback[J]. Chin. Phys. Lett., 2011, 28(1): 120505
[6] CAI Jian-Chao, YU Bo-Ming, MEI Mao-Fei, LUO Liang. Capillary Rise in a Single Tortuous Capillary[J]. Chin. Phys. Lett., 2010, 27(5): 120505
[7] DONG Xi-Jie, HU Yi-Fan, WU Yu-Ying, ZHAO Jun, WAN Zhen-Zhu. A Fractal Model for Effective Thermal Conductivity of Isotropic Porous Silica Low-k Materials[J]. Chin. Phys. Lett., 2010, 27(4): 120505
[8] CAI Jian-Chao, YU Bo-Ming, ZOU Ming-Qing, MEI Mao-Fei. Fractal Analysis of Surface Roughness of Particles in Porous Media[J]. Chin. Phys. Lett., 2010, 27(2): 120505
[9] YUN Mei-Juan, YUE Yin, YU Bo-Ming, LU Jian-Duo, ZHENG Wei . A Geometrical Model for Tortuosity of Tortuous Streamlines in Porous Media with Cylindrical Particles[J]. Chin. Phys. Lett., 2010, 27(10): 120505
[10] GUO Long, CAI Xu. The Fractal Dimensions of Complex Networks[J]. Chin. Phys. Lett., 2009, 26(8): 120505
[11] WU Jin-Sui, YIN Shang-Xian, ZHAO Dong-Yu. A Particle Resistance Model for Flow through Porous Media[J]. Chin. Phys. Lett., 2009, 26(6): 120505
[12] HUANG Shou-Fang, ZHANG Ji-Qian, DING Shi-Jiang. State-to-State Transitions in a Hindmarsh-Rose Neuron System[J]. Chin. Phys. Lett., 2009, 26(5): 120505
[13] JIANG Zhi-Qiang, , ZHOU Wei-Xing, ,. Direct Evidence for Inversion Formula in Multifractal Financial Volatility Measure[J]. Chin. Phys. Lett., 2009, 26(2): 120505
[14] ZU Fang-Qiu, YU Jin, XU Wei, ZHANG Yan, YANG Hui-Zhen. Reversibility of Temperature-Induced Liquid Transition in Pb26Sn42Bi32 Melt: Experimental Evidence with Electrical Property[J]. Chin. Phys. Lett., 2008, 25(4): 120505
[15] LI Xian-Fen, CHEN Hong-Sheng, ZU Fang-Qiu, CHEN Zhi-Hao, SUN Qi-Qiang, GUO Lei-Lei. Kinetics of Liquid Structure Transition of Sn--(40wt%)Bi Melt[J]. Chin. Phys. Lett., 2008, 25(1): 120505
Viewed
Full text


Abstract