Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120504    DOI: 10.1088/0256-307X/28/12/120504
GENERAL |
Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach
FENG Cun-Fang1**, WANG Ying-Hai2
1School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430073
2Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000
Cite this article:   
FENG Cun-Fang, WANG Ying-Hai 2011 Chin. Phys. Lett. 28 120504
Download: PDF(527KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Projective synchronization in modulated time-delayed systems is studied by applying an active control method. Based on the Lyapunov asymptotical stability theorem, the controller and sufficient condition for projective synchronization are calculated analytically. We give a general method with which we can achieve projective synchronization in modulated time-delayed chaotic systems. This method allows us to adjust the desired scaling factor arbitrarily. The effectiveness of our method is confirmed by using the famous delay-differential equations related to optical bistable or hybrid optical bistable devices. Numerical simulations fully support the analytical approach.
Keywords: 05.45.Xt      05.45.Jn      05.45.Pq     
Received: 15 July 2011      Published: 29 November 2011
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Jn (High-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120504       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120504
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
FENG Cun-Fang
WANG Ying-Hai
[1] Pecora L M and Carroll T C 1990 Phys. Rev. Lett. 64 821
[2] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[3] Amritkar R E and Rangarajan G 2006 Phys. Rev. Lett. 96 258102
[4] Zhou J, Xiang L and Liu Z R 2007 Physica A 385 729
[5] Zhou J, Lu J A and Lü J H 2008 Automatica 44 996
[6] Rulkov N F, Sushchik M M, Tsimring L S and Abarbanel H D I 1995 Phys. Rev. E 51 980
[7] Kadir A, Wang X Y and Zhao Y Z 2011 Chin. Phys. Lett. 28 090503
[8] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev. Lett. 76 1804
[9] Zhan M, Wei G W and Lai C H 2002 Phys. Rev. E 65 036202
[10] Voss H U 2001 Phys. Rev. Lett. 87 014102
[11] Mainieri R and Rehacek J 1999 Phys. Rev. Lett. 82 3042
[12] Feng C F, Xu X J, Wang S J and Wang Y H 2008 Chaos 18 023117
Feng C F, Zhang Y, Sun J T, Qi W and Wang Y H 2008 Chaos, Solitons Fractals 38 743
[13] Feng C F 2010 Nonlinear Dyn 62 453
[14] Ghosh D, Banerjee S and Chowdhuryd A R 2010 Phys. Lett. A 374 2143
[15] Wu Z Y and Fu X C 2010 Chin. Phys. Lett. 27 050502
[16] Cao L Y and Lai Y C 1998 Phys. Rev. E 58 382
[17] Chee C Y and Xu D L 2005 Chaos Solitons and Fractals 23 1063
[18] Foss J, Longtin A, Mensour B and Milton J 1996 Phys. Rev. Lett. 76 708
[19] Pyragas K 1998 Phys. Rev. E 58 3067
[20] Pyragas K 1998 Int. J. Bifur. Chaos 8 1839
[21] Banerjee S, Ghosh D, Ray A and Roy-Chowdhury A 2008 Europhys. Lett. 81 20006
[22] Arecchi F T, Meucci R, Allaria E, Garbo A Di and Tsimring L S 2002 Phys. Rev. E 65 046237
[23] Senthilkumar D V and Lakshmanan M 2007 Chaos 17 013112
[24] Hegger R, Bunner M J, Kantz H and Giaquinta A 1998 Phys. Rev. Lett. 81 558
[25] Zhao H, Liu Y W, Wang Y H and Hu B B 1998 Phys. Rev. E 58 4383
[26] Ikeda K, Daido H and Akimoto O 1980 Phys. Rev. Lett. 45 709
[27] Vallée R and Delisle C 1986 Phys. Rev. A 34 309
[28] Goedgebuer J P, Larger L and Porte H 1998 Phys. Rev. E 57 2795
[29] Mackey M C and Glass L 1977 Science 197 287
[30] Feng C F, Zhang Y and Wang Y H 2006 Chin. Phys. Lett. 23 1418
[31] Ho M C, Hung Y C and Chou C H 2002 Phys. Lett. A 296 43
[32] He R and Vaiya P G 1992 Phys. Rev. A 46 7387
[33] Li J N and Hao B L 1989 Commun. Theor. Phys. 11 265
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 120504
[2] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 120504
[3] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120504
[4] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 120504
[5] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120504
[6] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 120504
[7] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 120504
[8] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 120504
[9] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 120504
[10] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 120504
[11] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 120504
[12] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 120504
[13] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 120504
[14] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 120504
[15] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 120504
Viewed
Full text


Abstract