Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120503    DOI: 10.1088/0256-307X/28/12/120503
GENERAL |
Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control
GUO Xiao-Yong1,2*, LI Jun-Min1
1Department of Applied Mathematics, Xidian University, Xi'an 710071
2Department of Mathematics and Science, Lincang Normal College, Lincang 677000
Cite this article:   
GUO Xiao-Yong, LI Jun-Min 2011 Chin. Phys. Lett. 28 120503
Download: PDF(609KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We introduce a hybrid feedback control scheme to design a controller for the projective synchronization of complex dynamical networks with unknown periodically time-varying parameters. A differential-difference mixed parametric learning law and an adaptive learning control law are constructed to ensure the asymptotic convergence of the error in the sense of square error norm. Moreover, numerical simulation results are used to verify the effectiveness of the proposed method.
Keywords: 05.45.Xt      02.30.Yy     
Received: 30 March 2011      Published: 29 November 2011
PACS:  05.45.Xt (Synchronization; coupled oscillators)  
  02.30.Yy (Control theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120503       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120503
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
GUO Xiao-Yong
LI Jun-Min
[1] Pecora L M and Carroll T L 1998 Phys. Rev. Lett. 80 2109
[2] Li C and Chen G 2004 Physica A 343 263
[3] Wang X F and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
[4] Wang M, Wang X and Liu Z 2010 Chin. J. Phys. 48 805
[5] Lu W L and Chen T 2006 Physica D 213 214
[6] Gao H, Lam J and Chen G 2006 Phys. Lett. A 360 263
[7] Lü J H and Chen G R 2005 IEEE Trans. Automat. Control 50 841
[8] Ahn C K 2011 Chin. Phys. Lett. 28 100504
[9] Wang Y, Zhang H, Wang X and Yang D 2010 IEEE Trans. Systems, Man, Cybernetics-Part B: Cybernetics 40 1468
[10] Xiao Y and Xu W 2007 Chin. Phys. B 16 1597
[11] Jia F, Xu W and Du L 2007 Acta Phys. Sin. 56 5640
[12] Wei D, Luo X and Qin Y 2009 Chin. Phys. B 18 2184
[13] Wang X and He Y 2008 Phys. Lett. A 372 435
[14] Cao J, Li H and Ho D 2005 Chaos, Solitons and Fractals 23 1285
[15] Yu D, Xia L and Wang D 2006 Chin. Phys. B 15 1454
[16] Gao M and Cui B 2009 Chin. Phys. B 18 76
[17] Min F and Wang Z 2007 Acta Phys. Sin. 56 6238
[18] Meng J and Wang X 2008 Mod. Phys. Lett. B 22 181
[19] Wang X, Nian F and Guo G 2009 Phys. Lett. A 373 1754
[20] Sun Y, Li J, Wang J and Wang H 2010 Chin. Phys. B 19 020505
[21] Wang M, Wang X and Niu Y 2011 Chin. Phys. B 20 010508
[22] Kadir A, Wang X and Zhao Y 2011 Chin. Phys. Lett. 28 090503
[23] Wang X and Wang Y 2011 Nonlinear Dyn. 65 311
[24] Song Y X, Yu X H, Chen G R, Xu J X and Tian Y P 2002 Int. J. Bifur. Chaos 12 1057
[25] Xu J X and Yan R 2006 IEEE Trans. Autom. Control 51 1842
[26] Li Z and Chen G 2004 Phys. Lett. A 324 166
[27] Wang L, Dai H P, Dong H, Shen Y H and Sun Y X 2008 Phys. Lett. A 372 3632
[28] Wang X and Chen G 2002 IEEE Trans. Circuits Syst. I 49 54
[29] Wang X and Chen G 2002 Int. J. Bifur. Chaos 12 187
[30] Li C and Chen G 2004 Physica A 343 263
[31] Lü J and Chen G 2005 IEEE Trans. Automat. Contr. 50 841
[32] Wu C W 2005 IEEE Trans. Circuits Syst. II 52 282
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 120503
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120503
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 120503
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120503
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 120503
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 120503
[7] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 120503
[8] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 120503
[9] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 120503
[10] GUO Rong-Wei . Simultaneous Synchronization and Anti-Synchronization of Two Identical New 4D Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(4): 120503
[11] SONG Yan-Li . Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model[J]. Chin. Phys. Lett., 2011, 28(12): 120503
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 120503
[13] LI Hai-Yan**, HU Yun-An . Backstepping-Based Synchronization Control of Cross-Strict Feedback Hyper-Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(12): 120503
[14] TANG Wen-Yan**, QU Zhi-Hua, GUO Yi . Analysis and Control of Two-Layer Frenkel–Kontorova Model[J]. Chin. Phys. Lett., 2011, 28(11): 120503
[15] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 120503
Viewed
Full text


Abstract