Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120502    DOI: 10.1088/0256-307X/28/12/120502
GENERAL |
Frequency Effect of Harmonic Noise on the FitzHugh–Nagumo Neuron Model
SONG Yan-Li
School of Sciences, Tianjin University, Tianjin 300072
Cite this article:   
SONG Yan-Li 2011 Chin. Phys. Lett. 28 120502
Download: PDF(608KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Using harmonic noise, the frequency effect of noise on the FitzHugh–Nagumo neuron model is investigated. The results show that the neuron has a resonance characteristic and responds strongly to the noise with a certain frequency at fixed power. Driven by the noise with this frequency, the train is most regular and the coefficient of variation R has a minimum. The imperfect synchronization takes place, which, however, is optimal only for noise with an appropriate frequency. It is shown that there exists coherence resonance related to frequency.
Keywords: 05.40.Ca      05.45.Xt      87.16.dj     
Received: 19 September 2011      Published: 29 November 2011
PACS:  05.40.Ca (Noise)  
  05.45.Xt (Synchronization; coupled oscillators)  
  87.16.dj (Dynamics and fluctuations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120502       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SONG Yan-Li
[1] Lindner B, García-Ojalvo J, Neiman A and Schimansky-Geier L 2004 Phys. Rep. 392 321
[2] Gu H G, Yang M H, Li L, Liu Z Q and Ren W 2003 Phys. Lett. A 319 89
[3] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[4] Longtin A 2000 Chaos, Solitons and Fractals 11 1835
[5] Feng X Q and Zheng Z G 2005 I Int. J. Mod. Phys. B 19 3501
[6] Du Y and Lu Q S 2010 Chin. Phys. Lett. 27 020503
[7] Jia B, Gu H G and Li Y Y 2011 Chin. Phys. Lett. 28 090507
[8] Sun Z Q, Xie P, Li W and Wang P Y 2010 Chin. Phys. Lett. 27 088702
[9] Nozaki D, Mar D J, Grigg P and Collins J 1999 Phys. Rev. Lett. 82 2402
[10] Wu S G, Ren W, He K F and Huang Z Q 2001 Phys. Lett. A 279 347
[11] Baltanás J P and Casado J M 1998 Physica D 122 231
[12] Bao J D, Song Y L, Ji Q and Zhuo Y Z 2005 Phys. Rev. E 72 11113
[13] Song Y L, Bao J D, Wang H Y and Ji Q 2005 Commun. Theor. Phys. 43 97
[14] Rechardson M, Brunel N and Hakim V 2003 J. Neurophysiol. 89 2538
[15] Xing J L, Hu S J, Jian Z and Duan J H 2003 Pain 105 177
[16] Bartussek R, Hänggi P and Kissner J G 1994 Europhys. Lett. 28 459
[17] Honeycutt R L 1992 Phys. Rev. A 45 604
[18] Liu F, Wang J F and Wang W 1999 Phys. Rev. E 59 3453
[19] Yu Y G, Wang W, Wang J F and Liu F 2001 Phys. Rev. E 63 021907
[20] Buldú J M, García-Ojalvo J, Mirasso C R, Torrent M C and Sancho J M 2001 Phys. Rev. E 64 051109
Related articles from Frontiers Journals
[1] HE Gui-Tian, LUO Mao-Kang. Weak Signal Frequency Detection Based on a Fractional-Order Bistable System[J]. Chin. Phys. Lett., 2012, 29(6): 120502
[2] LI Jian-Ping,YU Lian-Chun,YU Mei-Chen,CHEN Yong**. Zero-Lag Synchronization in Spatiotemporal Chaotic Systems with Long Range Delay Couplings[J]. Chin. Phys. Lett., 2012, 29(5): 120502
[3] LI Nian-Qiang, PAN Wei, YAN Lian-Shan, LUO Bin, XU Ming-Feng, TANG Yi-Long. Quantifying Information Flow between Two Chaotic Semiconductor Lasers Using Symbolic Transfer Entropy[J]. Chin. Phys. Lett., 2012, 29(3): 120502
[4] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 120502
[5] WANG Sha, YU Yong-Guang. Generalized Projective Synchronization of Fractional Order Chaotic Systems with Different Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 120502
[6] KADIR Abdurahman, WANG Xing-Yuan**, ZHAO Yu-Zhang . Generalized Synchronization of Diverse Structure Chaotic Systems[J]. Chin. Phys. Lett., 2011, 28(9): 120502
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 120502
[8] JIANG Hui-Jun, WU Hao, HOU Zhong-Huai** . Explosive Synchronization and Emergence of Assortativity on Adaptive Networks[J]. Chin. Phys. Lett., 2011, 28(5): 120502
[9] LU Hong**, BAO Jing-Dong . Time Evolution of a Harmonic Chain with Fixed Boundary Conditions[J]. Chin. Phys. Lett., 2011, 28(4): 120502
[10] GUO Xiao-Yong, *, LI Jun-Min . Projective Synchronization of Complex Dynamical Networks with Time-Varying Coupling Strength via Hybrid Feedback Control[J]. Chin. Phys. Lett., 2011, 28(12): 120502
[11] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 120502
[12] WEI Du-Qu**, LUO Xiao-Shu, CHEN Hong-Bin, ZHANG Bo . Random Long-Range Interaction Induced Synchronization in Coupled Networks of Inertial Ratchets[J]. Chin. Phys. Lett., 2011, 28(11): 120502
[13] LIU Xiong-Wei**, NA Xue-Sen, XU Ren-Xin, QIAO Guo-Jun . Particle Emission-Dependent Timing Noise of Pulsars[J]. Chin. Phys. Lett., 2011, 28(1): 120502
[14] LI Mei-Sheng**, ZHANG Hong-Hui, ZHAO Yong, SHI Xia . Synchronization of Coupled Neurons Controlled by a Pacemaker[J]. Chin. Phys. Lett., 2011, 28(1): 120502
[15] REN Yuan, MIAO Wei, YAO Qi-Jun, ZHANG Wen, SHI Sheng-Cai** . Terahertz Direct Detection Characteristics of a Superconducting NbN Bolometer[J]. Chin. Phys. Lett., 2011, 28(1): 120502
Viewed
Full text


Abstract