Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120303    DOI: 10.1088/0256-307X/28/12/120303
GENERAL |
An Effective Heisenberg Spin Chain in a Fiber-Cavity System
ZHONG Zhi-Rong1**, ZHANG Bin1, LIN Xiu1,2, SU Wan-Jun1
1Department of Physics, Fuzhou University, Fuzhou 350002
2School of Physics and Optoelectronics Technology, Fujian Normal University, Fuzhou 350007
Cite this article:   
ZHONG Zhi-Rong, ZHANG Bin, LIN Xiu et al  2011 Chin. Phys. Lett. 28 120303
Download: PDF(494KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We propose a scheme to realize the Heisenberg spin chain in a one-dimensional array of cavities connected by optical fibers. The proposed scheme is based on the off-resonant Raman transitions between two ground states of atoms, and is induced by the cavity modes and external fields. Under the interactions between the nearest neighbors (NNs) and the next NNs, the result shows that the atoms, via the exchange of virtual photons, can be effectively equal to a spin-1/2 Heisenberg model under certain conditions. The parameters of the effective Hamiltonian can be controlled by tuning the laser fields.
Keywords: 03.67.Hk      42.50.Pq     
Received: 02 June 2011      Published: 29 November 2011
PACS:  03.67.Hk (Quantum communication)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120303       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120303
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHONG Zhi-Rong
ZHANG Bin
LIN Xiu
SU Wan-Jun
[1] Arnesen M C, Bose S and Vedral V 2001 Phys. Rev. Lett. 87 017901
[2] Wang X G 2001 Phys. Rev. A 64 012313
[3] Kamta G L and Starace A F 2002 Phys. Rev. Lett. 88 107901
[4] Zhou L, Song H S, Guo Y Q and Li C 2003 Phys. Rev. A 68 024301
[5] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[6] Abliz A, Gao H J, Xie X C, Wu Y S and Liu W M 2006 Phys. Rev. A 74 052105
[7] Kheirandish F, Akhtarshenas S J and Mohammadi H 2008 Phys. Rev. A 77 042309
[8] Christandl M, Datta N, Ekert A and Landahl A J 2004 Phys. Rev. Lett. 92 187902
[9] Makhlin Y, Schön and Shnirman A 2001 Rev. Mod. Phys. 73 357
[10] Loss D and DiVincenzo D P 1998 Phys. Rev. A 57 120
Burkard G, Loss D and DiVincenzo D P 1999 Phys. Rev. B 59 2070
[11] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 91 090402
Garca-Ripol J J, Martin-Delgado M A and Cirac J I 2004 Phys. Rev. Lett. 93 250405
[12] Angelakis D G, Santos M F and Bose S 2007 Phys. Rev. A 76 031805(R)
[13] Hartmann M J, Brandäo F G S L and Plenio M B 2006 Nature Phys. 2 849
Hartmann M J, Brandäo F G S L and Plenio M B 2007 Phys. Rev. Lett. 99 160501
[14] Greentree A D, Tahan C Cole J H and Hollenberg L C L 2006 Nature Phys. 2 856
[15] Rossini D and Fazio R 2007 Phys. Rev. Lett. 99 186401
[16] Hu F M, Zhou L, Shi T and Sun C P 2007 Phys. Rev. A 76 013819
[17] Angelakis J Cho, Angelakis D G and Bose S 2008 Phys. Rev. A 78 062338
[18] Zhou L, Yan W B and Zhao X Y, 2009 J Phys. B: At. Mol. Opt. Phys. 42 065502
[19] Chen Z X, Zhou Z W, Zhou X X, Zhou X F and Guo G C 2010 Phys. Rev. A 81 022303
[20] Cirac J I, Zoller P, Kimble H J and Mabuc H 1997 Phys. Rev. Lett. 78 3221
[21] Pellizzari T 1997 Phys. Rev. Lett. 79 5242
[22] vanEnk S J, Kimble H J, Cirac J I and Zoller P 1999 Phys. Rev. A 59 2659
[23] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 Phys. Rev. A 80 012305
Yang Z B, Ye S Y, Serafini A and Zheng S B 2010 J. Phys. B: At. Mol. Opt. Phys. 43 085506
[24] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[25] Yin Z Q and Li F L 2007 Phys. Rev. A 75 012324
Yin Z Q and Li F L and Peng P 2007 Phys. Rev. A 76 062311
[26] Ye S Y, Zhong Z R and Zheng S B 2008 Phys. Rev. A 77 014303
Zhong Z R 2010 Chin. Phys. Lett. 27 100305
[27] Lu X Y, Liu J B, Ding C L and Li J H 2008 Phys. Rev. A 78 032305
Lu X Y, Si L G, Hao X Y and Yang X X 2009 Phys. Rev. A 79 052330
[28] Zhong Z R 2010 Opt. Commun. 283 1972
[29] Zheng S B, Yang C P and Nori F 2010 Phys. Rev. A 82 042327
[30] Wu Y 1996 Phys. Rev. A 54 1586
Wu Y and Yang X X 2005 Phys. Rev. A 71 053806
Wu Y and Yang X X 2007 Phys. Rev. Lett. 98 013601
[31] Hennessy K, Badolato A, Winger M, Gerace D, Atatüre M, Gulde S, Fält S, Hu E L and Imamğlu A 2007 Nature 445 896
[32] Yang C P, Zheng S B and Nori F 2010 Phys. Rev. A 82 062326
[33] Yang W L, Hu Y, Yin Z Q, Deng Z J and Feng M 2011 Phys. Rev. A 83 022302
Related articles from Frontiers Journals
[1] 天琦 窦,吉鹏 王,振华 李,文秀 屈,舜禹 杨,钟齐 孙,芬 周,雁鑫 韩,雨晴 黄,海强 马. A Fully Symmetrical Quantum Key Distribution System Capable of Preparing and Measuring Quantum States*

Supported by the Fundamental Research Funds for the Central Universities (Grant No. 2019XD-A02), and the State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications (Grant No. IPO2019ZT06).

[J]. Chin. Phys. Lett., 2020, 37(11): 120303
[2] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 120303
[3] Chang Ho Hong,Jin O Heo,Jong in Lim,Hyung jin Yang,**. A Quantum Network System of QSS-QDC Using χ-Type Entangled States[J]. Chin. Phys. Lett., 2012, 29(5): 120303
[4] XIANG Shao-Hua**,DENG Xiao-Peng,SONG Ke-Hui. Protection of Two-Qubit Entanglement by the Quantum Erasing Effect[J]. Chin. Phys. Lett., 2012, 29(5): 120303
[5] Piotr Zawadzki**. New View of Ping-Pong Protocol Security[J]. Chin. Phys. Lett., 2012, 29(1): 120303
[6] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 120303
[7] LI Jun-Wang, WU Chun-Wang, DAI Hong-Yi** . Quantum Information Transfer in Circuit QED with Landau–Zener Tunneling[J]. Chin. Phys. Lett., 2011, 28(9): 120303
[8] ZHENG An-Shou, **, LIU Ji-Bing, CHEN Hong-Yun . N−Qubit W State of Spatially Separated Atoms via Fractional Adiabatic Passage[J]. Chin. Phys. Lett., 2011, 28(8): 120303
[9] XU Qing, HU Xiang-Ming** . Nonadiabatic Effects of Atomic Coherence on Laser Intensity Fluctuations in Electromagnetically Induced Transparency[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[10] YAN Hui, **, ZHU Shi-Liang, DU Sheng-Wang . Efficient Phase-Encoding Quantum Key Generation with Narrow-Band Single Photons[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[11] WANG Xiao-Bo, WANG Jing-Jing, HE Bo, XIAO Lian-Tuan**, JIA Suo-Tang . Photon Counting Optical Time Domain Reflectometry Applying a Single Photon Modulation Technique[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[12] ZHANG Peng**, LI Chao, . Feasibility of Double-Click Attack on a Passive Detection Quantum Key Distribution System[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[13] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 120303
[14] WANG Mei-Yu, YAN Feng-Li** . Perfect Entanglement Teleportation via Two Parallel W State Channels[J]. Chin. Phys. Lett., 2011, 28(6): 120303
[15] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 120303
Viewed
Full text


Abstract