Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120202    DOI: 10.1088/0256-307X/28/12/120202
GENERAL |
Poisson Theory and Inverse Problem in a Controllable Mechanical System
XIA Li-Li
Department of Physics, Henan Institute of Education, Zhengzhou 450046
Cite this article:   
XIA Li-Li 2011 Chin. Phys. Lett. 28 120202
Download: PDF(386KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The Poisson theory and inverse problem are studied in a controllable mechanical system. Equations of motion of the controllable mechanical system in phase space are given. Poisson's integral theory of the system is established. The potential force field is constructed by solving the inverse problem in a controllable mechanical system. Finally, an example is given to illustrate the application of the results.
Keywords: 02.30.Hq      02.30.Zz      45.20.Jj     
Received: 14 July 2011      Published: 29 November 2011
PACS:  02.30.Hq (Ordinary differential equations)  
  02.30.Zz (Inverse problems)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120202       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIA Li-Li
[1] You C D 1996 The Modern Control Theory Basic (Beijing: Electronic Industry Press)
[2] Mei F X 1988 J. Beijing Inst. Technol. 8 17
[3] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology press)
[4] Luo S K 1996 Appl. Math. Mech. 7 683
[5] Fu J L, Chen L Q, Bai J H and Yang X D 2003 Chin. Phys. 12 695
[6] Xia L L and Zhao X L 2009 Chin. Phys. Lett. 26 010203
[7] Xia L L and Cai J L 2010 Chin. Phys. Lett. 27 080201
[8] Luo S K and Zhang Y F et al 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)
[9] Cai J L 2008 Chin. Phys. Lett. 25 1523
[10] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369
[11] Cai J L, Luo S K and Mei F X 2008 Chin. Phys. B 17 3170
[12] Xia L L, Li Y C and Wang X J 2009 Acta Phys. Sin. 58 28
[13] Whittaker E T 1937 A Treatise on the Analytical Dynamics of Particles and Rigid Bodies 4th end (Cambridge: Cambridge UP)
[14] Vujanovic B 1984 Int. J. Nonlinear Mech. 19 383
[15] Vujanovic B and Jones S E 1989 Variational Methods in Nonconservative Phenomena (Boston MA: Academic Press)
[16] Vujanovic B 1987 J. Sound Vibration 114 375
[17] Mei F X 1989 Acta Mech. Sin. 5 260
[18] Mei F X 1990 Acta Mech. Sin. 6 160
[19] Mei F X 1992 Appl. Math. Mech. 13 165
[20] Mei F X 2000 Appl. Mech. Rev. (ASME) 53 283
[21] Xia L L 2011 Chin. Phys. Lett. 28 040201
[22] Mei F X 2000 J. Non-Linear Mech. 35 229
Related articles from Frontiers Journals
[1] K. Fakhar, A. H. Kara. The Reduction of Chazy Classes and Other Third-Order Differential Equations Related to Boundary Layer Flow Models[J]. Chin. Phys. Lett., 2012, 29(6): 120202
[2] ZHENG Shi-Wang, WANG Jian-Bo, CHEN Xiang-Wei, XIE Jia-Fang. Mei Symmetry and New Conserved Quantities of Tzénoff Equations for the Variable Mass Higher-Order Nonholonomic System[J]. Chin. Phys. Lett., 2012, 29(2): 120202
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 120202
[4] CAO Qing-Jie, **, HAN Ning, TIAN Rui-Lan . A Rotating Pendulum Linked by an Oblique Spring[J]. Chin. Phys. Lett., 2011, 28(6): 120202
[5] XU Wei, YUAN Bo, AO Ping, ** . Construction of Lyapunov Function for Dissipative Gyroscopic System[J]. Chin. Phys. Lett., 2011, 28(5): 120202
[6] YAN Lu, SONG Jun-Feng, QU Chang-Zheng** . Nonlocal Symmetries and Geometric Integrability of Multi-Component Camassa–Holm and Hunter–Saxton Systems[J]. Chin. Phys. Lett., 2011, 28(5): 120202
[7] XIA Li-Li . A Field Integration Method for a Nonholonomic Mechanical System of Non-Chetaev's Type[J]. Chin. Phys. Lett., 2011, 28(4): 120202
[8] HUANG Wei-Li, CAI Jian-Le** . Conformal Invariance of Higher-Order Lagrange Systems by Lie Point Transformation[J]. Chin. Phys. Lett., 2011, 28(11): 120202
[9] GUO Bo-Ling, LING Li-Ming, ** . Rogue Wave, Breathers and Bright-Dark-Rogue Solutions for the Coupled Schrödinger Equations[J]. Chin. Phys. Lett., 2011, 28(11): 120202
[10] ZHANG Yi** . The Method of Variation of Parameters for Solving a Dynamical System of Relative Motion[J]. Chin. Phys. Lett., 2011, 28(10): 120202
[11] XIA Li-Li, CAI Jian-Le. Symmetry of Lagrangians of Nonholonomic Controllable Mechanical Systems[J]. Chin. Phys. Lett., 2010, 27(8): 120202
[12] TIAN Jing, QIU Hai-Bo, CHEN Yong,. Nonlocal Measure Synchronization in Coupled Bosonic Josephson Junctions[J]. Chin. Phys. Lett., 2010, 27(7): 120202
[13] TIAN Rui-Lan, CAO Qing-Jie, LI Zhi-Xin. Hopf Bifurcations for the Recently Proposed Smooth-and-Discontinuous Oscillator[J]. Chin. Phys. Lett., 2010, 27(7): 120202
[14] LIU Fu-Hao, ZHANG Qi-Chang, TAN Ying. Analysis of High Codimensional Bifurcation and Chaos for the Quad Bundle Conductor's Galloping[J]. Chin. Phys. Lett., 2010, 27(4): 120202
[15] LIU Fu-Hao, ZHANG Qi-Chang, WANG Wei. Analysis of Hysteretic Strongly Nonlinearity for Quad Iced Bundle Conductors[J]. Chin. Phys. Lett., 2010, 27(3): 120202
Viewed
Full text


Abstract