Chin. Phys. Lett.  2011, Vol. 28 Issue (12): 120201    DOI: 10.1088/0256-307X/28/12/120201
GENERAL |
Conservation Laws and Self-Consistent Sources for a Super-Classical-Boussinesq Hierarchy
YU Fa-Jun
College of Maths and Systematic Science, Shenyang Normal University, Shenyang 110034
Cite this article:   
YU Fa-Jun 2011 Chin. Phys. Lett. 28 120201
Download: PDF(391KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The super-classical-Boussinesq hierarchy with self-consistent sources is considered. Then, infinitely many conservation laws for the integrable super-classical-Boussinesq hierarchy are established.
Keywords: 02.30.Ik      02.30.Jr     
Received: 08 March 2011      Published: 29 November 2011
PACS:  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/12/120201       OR      https://cpl.iphy.ac.cn/Y2011/V28/I12/120201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Fa-Jun
[1] Miura R M, Gardner C S and Kruskal M D 1968 J. Math. Phys 9 1204

[2] Wadati M, Sanuki H and Konno K 1975 Prog. Theor. Phys. 53 419

[3] Kupershmidt B A 1987 Elements of Superintegrable Systems (Dordrecht: Reidel)

[4] Kupershmidt B A 1984 Phys. Lett. A 102 213

[5] Volkov D V and Akulov V P 1973 Phys. Lett. B 46 109

[6] Wess J and Zumino B 1974 Nucl. Phys. B 70 39

[7] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511

[8] Tao S X and Xia T C 2010 Chin. Phys. B 19 070202

[9] Yu J, Han J W and He J S 2009 J. Phys. A: Math. Theor. 42 465201

[10] Li Z 2009 Mode. Phys. Lett. B 23 2907

[11] He J S, Yu J, Zhou R G and Cheng Y 2008 Mod. Phys. Lett. B 22 275

[12] Yu J, He J S, Cheng Y and Han J W 2010 J. Phys. A: Math. Theor. 43 445201

[13] Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. B 31 361

[14] Kupershmidt B A 1984 Phys. Lett. A 102 213

[15] Mathieu P 1988 J. Math. Phys. 29 2499

[16] Yu F J 2008 Chin. Phys. Lett. 25 3519

[17] Li L 2011 Phys. Lett. A 375 1402

[18] Zeng Y B, Ma W X and Lin R L 2000 J. Math. Phys. 41 5453
Related articles from Frontiers Journals
[1] E. M. E. Zayed, S. A. Hoda Ibrahim. Exact Solutions of Nonlinear Evolution Equations in Mathematical Physics Using the Modified Simple Equation Method[J]. Chin. Phys. Lett., 2012, 29(6): 120201
[2] WU Yong-Qi. Exact Solutions to a Toda-Like Lattice Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2012, 29(6): 120201
[3] CUI Kai. New Wronskian Form of the N-Soliton Solution to a (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(6): 120201
[4] CAO Ce-Wen**,ZHANG Guang-Yao. Lax Pairs for Discrete Integrable Equations via Darboux Transformations[J]. Chin. Phys. Lett., 2012, 29(5): 120201
[5] DAI Zheng-De**, WU Feng-Xia, LIU Jun and MU Gui. New Mechanical Feature of Two-Solitary Wave to the KdV Equation[J]. Chin. Phys. Lett., 2012, 29(4): 120201
[6] Mohammad Najafi**,Maliheh Najafi,M. T. Darvishi. New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach[J]. Chin. Phys. Lett., 2012, 29(4): 120201
[7] S. Karimi Vanani, F. Soleymani. Application of the Homotopy Perturbation Method to the Burgers Equation with Delay[J]. Chin. Phys. Lett., 2012, 29(3): 120201
[8] WANG Jun-Min. Periodic Wave Solutions to a (3+1)-Dimensional Soliton Equation[J]. Chin. Phys. Lett., 2012, 29(2): 120201
[9] Hermann T. Tchokouansi, Victor K. Kuetche, Abbagari Souleymanou, Thomas B. Bouetou, Timoleon C. Kofane. Generating a New Higher-Dimensional Ultra-Short Pulse System: Lie-Algebra Valued Connection and Hidden Structural Symmetries[J]. Chin. Phys. Lett., 2012, 29(2): 120201
[10] LIU Ping**, FU Pei-Kai. Note on the Lax Pair of a Coupled Hybrid System[J]. Chin. Phys. Lett., 2012, 29(1): 120201
[11] LOU Yan, ZHU Jun-Yi** . Coupled Nonlinear Schrödinger Equations and the Miura Transformation[J]. Chin. Phys. Lett., 2011, 28(9): 120201
[12] WANG Jun-Min**, YANG Xiao . Theta-function Solutions to the (2+1)-Dimensional Breaking Soliton Equation[J]. Chin. Phys. Lett., 2011, 28(9): 120201
[13] A H Bokhari, F D Zaman, K Fakhar, *, A H Kara . A Note on the Invariance Properties and Conservation Laws of the Kadomstev–Petviashvili Equation with Power Law Nonlinearity[J]. Chin. Phys. Lett., 2011, 28(9): 120201
[14] LI Dong **, XIE Zheng, YI Dong-Yun . Numerical Simulation of Hyperbolic Gradient Flow with Pressure[J]. Chin. Phys. Lett., 2011, 28(7): 120201
[15] CHEN Shou-Ting**, ZHU Xiao-Ming, LI Qi, CHEN Deng-Yuan . N-Soliton Solutions for the Four-Potential Isopectral Ablowitz–Ladik Equation[J]. Chin. Phys. Lett., 2011, 28(6): 120201
Viewed
Full text


Abstract