CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Frequency Response of Modulated Electroluminescence of Light-Emitting Diodes |
FENG Lie-Feng1**, LI Yang1, LI Ding2, WANG Cun-Da1,2, ZHANG Guo-Yi2, YAO Dong-Sheng1, LIU Wei-Fang1, XING Peng-Fei1
|
1Department of Applied Physics, Tianjin University, Tianjin 300072
2Research Center for Wide-band Gap Semiconductors, School of Physics, Peking University, Beijing 100871
|
|
Cite this article: |
FENG Lie-Feng, LI Yang, LI Ding et al 2011 Chin. Phys. Lett. 28 107801 |
|
|
Abstract Frequency responses of modulated electroluminescence (EL) of light-emitting diodes were measured using a testing setup. With increasing frequency of the ac signal, the relative light intensity (RLI) clearly decreases. Furthermore, a peculiar asynchrony between the RLI and ac small-signal is observed. At frequencies higher than 10 kHz, the RLI clearly lags behind the ac signal and the absolute value of the lagging angle is nearly proportional to the signal frequency. Using the classical recombination model of light-emitting diodes under ac small-signal modulation, these abnormal characteristics of modulated EL can be clearly explained.
|
Keywords:
78.60.Fi
85.30.De
|
|
Received: 17 January 2011
Published: 28 September 2011
|
|
PACS: |
78.60.Fi
|
(Electroluminescence)
|
|
85.30.De
|
(Semiconductor-device characterization, design, and modeling)
|
|
|
|
|
[1] Zhu H, Shan C X, Wang L K, Yang Y, Zhang J Y, Yao B, Shen D Z and Fan X W 2010 Appl. Phys. Lett. 96 041110
[2] Pan Y B, Hao M S, Qi S L, Fang H and Zhang G Y 2010 Chin. Phys. Lett. 27 038503
[3] Ruan J, Yu T J, Jia C Y, Tao R C, Wang Z G and Zhang G Y 2009 Chin. Phys. Lett. 26 087802
[4] Chen Y X, Shen G D, Zhu Y X, Guo W L and Li J J 2011 Chin. Phys. Lett. 28 067806
[5] Wang C D, Zhu C Y, Zhang G Y, Shen J and Li L 2003 IEEE Trans. Electron. Devices 50 1145
[6] Zhu C Y, Wang C D, Feng L F, Zhang G Y, Yu L S and Shen J 2006 Solid-State Electron 50 821
[7] Feng L F, Li D, Zhu C Y, Wang C D, Cong H X, Zhang G Y and Du W M 2007 J. Appl. Phys. 102 094511
[8] Feng L F, Li D, Zhu C Y, Wang C D, Cong H X, Xie X S and Lu C Z 2007 J. Appl. Phys. 102 063102
[9] Feng L F, Wang C D, Cong H X, Zhu C Y, Wang J, Xie X S, Lu C Z and Zhang G Y 2007 IEEE J. Quantum Electron. 43 458
[10] Feng L F, Li Y, Wang J, Cong H X, Zhu C Y, Wang C D and Zhang G Y 2009 J. Optoelectron. Laser 20 1565 (in Chinese)
[11] Pauchard A, Bitter M, Pan Z, Kirstjansson S, Hodge L A, Williams K J, Tulchinsky D A, Hummel S G and Lo Y H 2004 IEEE Photon. Technol. Lett. 16 2544
[12] Peng C and Fauchet P M 1995 Appl. Phys. Lett. 67 2515
[13] Pal A J, Österbacka R, Kallman K M and Stubb H 1997 Appl. Phys. Lett. 70 2022
[14] Österback R, Pal A J, Kallman K M and Stubb H 1998 J. Appl. Phys. 83 1748
[15] Pal A J, Östergard T P, Österbacka R M, Paloheimo J and Stubb H 1998 IEEE J. Sel. Top. Quantum Electron. 4 137
[16] Barlow I A, Kreouzis T and Lidzey D G 2009 Appl. Phys. Lett. 94 243301
[17] Fukuda T, Ohashi M, Wei B, Okada T, Ichikawa M and Taniguchi Y 2007 Opt. Lett. 32 1150
[18] Fukuda T, Wei B, Suto E, Ichikawa M and Taniguchi Y 2008 Phys. Status Solidi RRL 2 290
[19] Augelli V, Vasanelli L, Leo M, Leo R A and Soliani G 1982 J. Appl. Phys. 53 1558
[20] Chung S K 1998 IEEE Trans. Electron. Devices 45 1850
[21] Feng L F, Li Y, Zhu C Y, Cong H X and Wang C D 2010 IEEE J. Quantum Electron. 46 1072
[22] Li Y, Wang C D, Feng L F, Zhu C Y, H X Cong, Li D and Zhang G Y 2011 J. Appl. Phys. 109 124506
[23] Steven E L and Karl H 1999 IEEE Trans. Electron. Devices 46 396
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|