Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 018701    DOI: 10.1088/0256-307X/28/1/018701
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Frequency-Locking in a Spatially Extended Predator-Prey Model
YU Cun-Juan**, TAN Ying-Xin
School of Chemical Engineering and Environmental, North University of China, Taiyuan 030051
Cite this article:   
YU Cun-Juan, TAN Ying-Xin 2011 Chin. Phys. Lett. 28 018701
Download: PDF(681KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The study is concerned with the effect of variable dispersal rates on Turing instability of a spatial Holling–Tanner system. A series of numerical simulations show that the oscillatory Turing pattern can emerge due to period diffusion coefficient. Moreover, we find that when the amplitude is above a threshold, 1:1 frequency-locking oscillation can be obtained. The results show that period diffusion coefficient plays an important role on the pattern formation in the predator-prey system.
Keywords: 87.23.Cc      82.40.Ck      05.45.Pq     
Received: 03 September 2010      Published: 23 December 2010
PACS:  87.23.Cc (Population dynamics and ecological pattern formation)  
  82.40.Ck (Pattern formation in reactions with diffusion, flow and heat transfer)  
  05.45.Pq (Numerical simulations of chaotic systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/018701       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/018701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YU Cun-Juan
TAN Ying-Xin
[1] Tanner J T 1975 Ecology 56 855
[2] Wollkind D J et al 1988 Bull. Math. Biol. 50 379
[3] Saez E et al 1999 SIAM J. Appl. Math. 59 1867
[4] Hassell M P 1978 The Dynamics of Arthropod Predator-Prey Systems (Princeton, NJ: Princeton University)
[5] Holling C S 1965 Mem. Ent. Soc. Can. 45 3
[6] Peng R, Wang M and Yang G 2008 Appl. Math. Comput. 196 570
[7] Hsu S B et al 1978 SIAM J. Appl. Math. 35 526
[8] Hsu S U and Huang T W 1995 SIAM J. Appl. Math. 55 763
[9] Levin S A, Powell T M and Steele J H 1993 Patch Dynamics Lecture Notes in Biomathematics (Berlin: Springer-Verlag)
[10] Hanski I and Gilpin M E 1997 Metapopulation Biology (San Diego: Academic)
[11] Hanski I 1999 Metapopulation Ecology (New York: Oxford University)
[12] Peng R and Wang M 2007 Appl. Math. Comput. 20 664
[13] Peng R and Shi J 2009 J. Diff. Equat. 247 866
[14] Sun G Q et al 2008 Chin. Phys. B 17 3936
[15] Mukhopadhyay B and Bhattacharyya R 2006 Bull. Math. Biol. 68 293
[16] Cross M C and Hohenberg P C 1993 Rev. Mod. Phys. 65 851
[17] Coullet P et al 1985 J. Phys. Lett. 46 787
[18] Shima S I and Kuramoto Y 2004 Phys. Rev. E 69 036213
[19] Ouyang Q 2000 Pattern Formation in a Reaction-Diffusion Systems (Shanghai: Scientific and Technological Education Publishing House) (in Chinese)
[20] Murray JD 1993 Mathematical Biology 2nd edn (Berlin: Springer)
[21] Sherratt J A 1995 J. Math. Biol. 33 29
Related articles from Frontiers Journals
[1] Paulo C. Rech. Dynamics in the Parameter Space of a Neuron Model[J]. Chin. Phys. Lett., 2012, 29(6): 018701
[2] ZHENG Yong-Ai. Adaptive Generalized Projective Synchronization of Takagi-Sugeno Fuzzy Drive-response Dynamical Networks with Time Delay[J]. Chin. Phys. Lett., 2012, 29(2): 018701
[3] LI Xian-Feng**, Andrew Y. -T. Leung, CHU Yan-Dong. Symmetry and Period-Adding Windows in a Modified Optical Injection Semiconductor Laser Model[J]. Chin. Phys. Lett., 2012, 29(1): 018701
[4] JI Ying**, BI Qin-Sheng . SubHopf/Fold-Cycle Bursting in the Hindmarsh–Rose Neuronal Model with Periodic Stimulation[J]. Chin. Phys. Lett., 2011, 28(9): 018701
[5] WANG Xing-Yuan**, QIN Xue, XIE Yi-Xin . Pseudo-Random Sequences Generated by a Class of One-Dimensional Smooth Map[J]. Chin. Phys. Lett., 2011, 28(8): 018701
[6] Department of Physics, Eastern Mediterranean University, G. Magosa, N. Cyprus, Mersin 0, Turkey
. Chaos in Kundt Type-III Spacetimes[J]. Chin. Phys. Lett., 2011, 28(7): 018701
[7] WANG Xing-Yuan**, REN Xiao-Li . Chaotic Synchronization of Two Electrical Coupled Neurons with Unknown Parameters Based on Adaptive Control[J]. Chin. Phys. Lett., 2011, 28(5): 018701
[8] SHI Si-Hong, YUAN Yong, WANG Hui-Qi, LUO Mao-Kang** . Weak Signal Frequency Detection Method Based on Generalized Duffing Oscillator[J]. Chin. Phys. Lett., 2011, 28(4): 018701
[9] LI Qun-Hong**, CHEN Yu-Ming, QIN Zhi-Ying . Existence of Stick-Slip Periodic Solutions in a Dry Friction Oscillator[J]. Chin. Phys. Lett., 2011, 28(3): 018701
[10] YANG Yang, WANG Cang-Long, DUAN Wen-Shan**, CHEN Jian-Min . Resonance and Rectification in a Two-Dimensional Frenkel–Kontorova Model with Triangular Symmetry[J]. Chin. Phys. Lett., 2011, 28(3): 018701
[11] LI Guang-Zhao, CHEN Yong-Qi, TANG Guo-Ning**, LIU Jun-Xian . Spiral Wave Dynamics in a Response System Subjected to a Spiral Wave Forcing[J]. Chin. Phys. Lett., 2011, 28(2): 018701
[12] FENG Cun-Fang**, WANG Ying-Hai . Projective Synchronization in Modulated Time-Delayed Chaotic Systems Using an Active Control Approach[J]. Chin. Phys. Lett., 2011, 28(12): 018701
[13] JIANG Guo-Hui, ZHANG Yan-Hui**, BIAN Hong-Tao, XU Xue-You . Fractal Analysis of Transport Properties in a Sinai Billiard[J]. Chin. Phys. Lett., 2011, 28(12): 018701
[14] Juan A. Lazzús** . Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network[J]. Chin. Phys. Lett., 2011, 28(11): 018701
[15] Eduardo L. Brugnago**, Paulo C. Rech. Chaos Suppression in a Sine Square Map through Nonlinear Coupling[J]. Chin. Phys. Lett., 2011, 28(11): 018701
Viewed
Full text


Abstract