CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Computational Investigation of InxGa1−xN/InN Quantum-Dot Intermediate-Band Solar Cell |
DENG Qing-Wen1**, WANG Xiao-Liang1,2,3, YANG Cui-Bai1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, YIN Hai-Bo1,2, HOU Qi-Feng1, BI Yang1, LI Jin-Min1,3, WANG Zhan-Guo2, HOU Xun3
|
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
3ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, PO Box 912, Beijing 100083
|
|
Cite this article: |
DENG Qing-Wen, WANG Xiao-Liang, YANG Cui-Bai et al 2011 Chin. Phys. Lett. 28 018401 |
|
|
Abstract An InxGa1−xN/InN quantum-dot intermediate-band solar cell is calculated by means of solving the Schrödinger equation according to the Kronig–Penney model. Based on particular assumptions, the power conversion efficiency is worked out. The results reveal that the InxGa1−xN/InN quantum-dot intermediate-band solar cell manifests much larger power conversion efficiency than that of p-n junction solar cells, and the power conversion efficiency strongly depends on the size of the quantum dot and the interdot distance.
|
Keywords:
84.60.Jt
84.60.Jt
03.67.Lx
|
|
Received: 23 July 2010
Published: 23 December 2010
|
|
PACS: |
84.60.Jt
|
(Photoelectric conversion)
|
|
84.60.Jt
|
(Photoelectric conversion)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
|
|
|
[1] Neufeld C J, Toledo N G, Cruz, Iza S C M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
[2] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F and Li J M 2007 J. Phys. D: Appl. Phys. 40 7335
[3] Zheng X H, Horng R H, Wuu D S, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2008 Appl. Phys. Lett. 93 261108
[4] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F, Li J M and Wang Z G 2008 J. Phys. D: Appl. Phys. 41 245104
[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[6] Luque A and Martí A 1997 Phys. Rev. Lett. 78 5014
[7] Martí A, Cuadra L and Luque A 2000 Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference (Anchorage, Alaska 15–22 September 2000) p 940
[8] Aroutiounian V, Petrosyan S, Khachatryan A and Touryan K 2001 J. Appl. Phys. 89 2268
[9] Nozik A J 2002 Physica E 14 115
[10] Levy M Y, Honsberg C, Martí A and Luque A 2005 Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference (Orlando, Florida 3–7 January 2005) p 90
[11] Luque A, Martí A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L and Balenzategui J L 2005 Appl. Phys. Lett. 87 083505
[12] Shao Q, Balandin A A, Fedoseyev A I and Turowski M 2007 Appl. Phys. Lett. 91 163503
[13] Wei G D and Forrest S R 2007 Nano Lett. 7 218
[14] Martí A, Antolin E, Canovas E, Lopez N, Linares P G, Luque A, Stanley C R and Farmer C D 2008 Thin Solid Films 516 6716
[15] Martí A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Cuadra L and Luque A 2006 Thin Solid Films 511 638
[16] Brown G F, Ager J W, Walukiewicz W and Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478
[17] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
[18] Lazarenkova O L and Balandin A A 2001 J. Appl. Phys. 89 5509
[19] Roosbroeck W V and Shockley W 1954 Phys. Rev. 94 1558
[20] Martí A, Cuadra L and Luque A 2001 IEEE Trans. Electron. Devices 48 2394
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|