Chin. Phys. Lett.  2011, Vol. 28 Issue (1): 018401    DOI: 10.1088/0256-307X/28/1/018401
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Computational Investigation of InxGa1−xN/InN Quantum-Dot Intermediate-Band Solar Cell
DENG Qing-Wen1**, WANG Xiao-Liang1,2,3, YANG Cui-Bai1,2, XIAO Hong-Ling1,2, WANG Cui-Mei1,2, YIN Hai-Bo1,2, HOU Qi-Feng1, BI Yang1, LI Jin-Min1,3, WANG Zhan-Guo2, HOU Xun3
1Materials Science Center, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
2Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, PO Box 912, Beijing 100083
3ISCAS-XJTU Joint Laboratory of Functional Materials and Devices for Informatics, PO Box 912, Beijing 100083
Cite this article:   
DENG Qing-Wen, WANG Xiao-Liang, YANG Cui-Bai et al  2011 Chin. Phys. Lett. 28 018401
Download: PDF(990KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract An InxGa1−xN/InN quantum-dot intermediate-band solar cell is calculated by means of solving the Schrödinger equation according to the Kronig–Penney model. Based on particular assumptions, the power conversion efficiency is worked out. The results reveal that the InxGa1−xN/InN quantum-dot intermediate-band solar cell manifests much larger power conversion efficiency than that of p-n junction solar cells, and the power conversion efficiency strongly depends on the size of the quantum dot and the interdot distance.
Keywords: 84.60.Jt      84.60.Jt      03.67.Lx     
Received: 23 July 2010      Published: 23 December 2010
PACS:  84.60.Jt (Photoelectric conversion)  
  84.60.Jt (Photoelectric conversion)  
  03.67.Lx (Quantum computation architectures and implementations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/28/1/018401       OR      https://cpl.iphy.ac.cn/Y2011/V28/I1/018401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Qing-Wen
WANG Xiao-Liang
YANG Cui-Bai
XIAO Hong-Ling
WANG Cui-Mei
YIN Hai-Bo
HOU Qi-Feng
BI Yang
LI Jin-Min
WANG Zhan-Guo
HOU Xun
[1] Neufeld C J, Toledo N G, Cruz, Iza S C M, DenBaars S P and Mishra U K 2008 Appl. Phys. Lett. 93 143502
[2] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F and Li J M 2007 J. Phys. D: Appl. Phys. 40 7335
[3] Zheng X H, Horng R H, Wuu D S, Chu M T, Liao W Y, Wu M H, Lin R M and Lu Y C 2008 Appl. Phys. Lett. 93 261108
[4] Zhang X B, Wang X L, Xiao H L, Yang C B, Ran J X, Wang C M, Hou Q F, Li J M and Wang Z G 2008 J. Phys. D: Appl. Phys. 41 245104
[5] Shockley W and Queisser H J 1961 J. Appl. Phys. 32 510
[6] Luque A and Martí A 1997 Phys. Rev. Lett. 78 5014
[7] Martí A, Cuadra L and Luque A 2000 Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference (Anchorage, Alaska 15–22 September 2000) p 940
[8] Aroutiounian V, Petrosyan S, Khachatryan A and Touryan K 2001 J. Appl. Phys. 89 2268
[9] Nozik A J 2002 Physica E 14 115
[10] Levy M Y, Honsberg C, Martí A and Luque A 2005 Conference Record of the Thirty-First IEEE Photovoltaic Specialists Conference (Orlando, Florida 3–7 January 2005) p 90
[11] Luque A, Martí A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Caballero L J, Cuadra L and Balenzategui J L 2005 Appl. Phys. Lett. 87 083505
[12] Shao Q, Balandin A A, Fedoseyev A I and Turowski M 2007 Appl. Phys. Lett. 91 163503
[13] Wei G D and Forrest S R 2007 Nano Lett. 7 218
[14] Martí A, Antolin E, Canovas E, Lopez N, Linares P G, Luque A, Stanley C R and Farmer C D 2008 Thin Solid Films 516 6716
[15] Martí A, Lopez N, Antolin E, Canovas E, Stanley C, Farmer C, Cuadra L and Luque A 2006 Thin Solid Films 511 638
[16] Brown G F, Ager J W, Walukiewicz W and Wu J 2010 Sol. Energy Mater. Sol. Cells 94 478
[17] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
[18] Lazarenkova O L and Balandin A A 2001 J. Appl. Phys. 89 5509
[19] Roosbroeck W V and Shockley W 1954 Phys. Rev. 94 1558
[20] Martí A, Cuadra L and Luque A 2001 IEEE Trans. Electron. Devices 48 2394
Related articles from Frontiers Journals
[1] GUO Yu, LUO Xiao-Bing. Quantum Teleportation between Two Distant Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2012, 29(6): 018401
[2] CAO Gang, WANG Li, TU Tao, LI Hai-Ou, XIAO Ming, GUO Guo-Ping. Pulse Designed Coherent Dynamics of a Quantum Dot Charge Qubit[J]. Chin. Phys. Lett., 2012, 29(3): 018401
[3] CHEN Liang, WAN Wei, XIE Yi, ZHOU Fei, FENG Mang. Microscopic Surface-Electrode Ion Trap for Scalable Quantum Information Processing[J]. Chin. Phys. Lett., 2012, 29(3): 018401
[4] CHEN Qing-Hu, **, LI Lei, LIU Tao, WANG Ke-Lin. The Spectrum in Qubit-Oscillator Systems in the Ultrastrong Coupling Regime[J]. Chin. Phys. Lett., 2012, 29(1): 018401
[5] XU Wei-Wei, HU Lin-Hua, LUO Xiang-Dong, LIU Pei-Sheng, DAI Song-Yuan**. The Electric Mechanism of Surface Pretreatments for Dye-Sensitized Solar Cells Based on Internal Equivalent Resistance Analysis[J]. Chin. Phys. Lett., 2012, 29(1): 018401
[6] HOU Shi-Yao, CUI Jing-Xin, LI Jun-Lin** . Experimental Realization of Braunstein's Weight-Decision Algorithm[J]. Chin. Phys. Lett., 2011, 28(9): 018401
[7] XIE Yi, ZHOU Fei, CHEN Liang, WAN Wei, FENG Mang** . Micromotion Compensation and Photoionization of Ions in a Linear Trap[J]. Chin. Phys. Lett., 2011, 28(9): 018401
[8] WANG Chuan, **, HAO Liang, ZHAO Lian-Jie . Implementation of Quantum Private Queries Using Nuclear Magnetic Resonance[J]. Chin. Phys. Lett., 2011, 28(8): 018401
[9] BAI Yi-Ming**, WANG Jun, CHEN Nuo-Fu, YAO Jian-Xi, ZHANG Xing-Wang, YIN Zhi-Gang, ZHANG Han, HUANG Tian-Mao . Dipolar and Quadrupolar Modes of SiO2/Au Nanoshell Enhanced Light Trapping in Thin Film Solar Cells[J]. Chin. Phys. Lett., 2011, 28(8): 018401
[10] XUE Peng . Quantum Computing via Singlet-Triplet Spin Qubits in Nanowire Double Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(7): 018401
[11] ZHANG Ji-Ying, ZHOU Zheng-Wei**, GUO Guang-Can . Eliminating Next-Nearest-Neighbor Interactions in the Preparation of Cluster State[J]. Chin. Phys. Lett., 2011, 28(5): 018401
[12] XUE Peng** . Entangling Gate of Dipolar Molecules Coupled to a Photonic Crystal[J]. Chin. Phys. Lett., 2011, 28(5): 018401
[13] ZHU Zhi-Cheng, TU Tao**, GUO Guo-Ping . Multipartite Spin Entangled States in Quantum Dots with a Quantum Databus Based on Nano Electro-Mechanical Resonator[J]. Chin. Phys. Lett., 2011, 28(4): 018401
[14] YANG Xiao-Guang, YANG Tao**, WANG Ke-Fan, GU Yong-Xian, JI Hai-Ming, XU Peng-Fei, NI Hai-Qiao, NIU Zhi-Chuan, WANG Xiao-Dong, CHEN Yan-Ling, WANG Zhan-Guo . Intermediate-Band Solar Cells Based on InAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2011, 28(3): 018401
[15] SHOU Chun-Hui, LUO Zhong-Yang**, WANG Tao, SHEN Wei-Dong, ROSENGARTEN Gary, WANG Cheng, NI Ming-Jiang, CEN Ke-Fa . A Dielectric Multilayer Filter for Combining Photovoltaics with a Stirling Engine for Improvement of the Efficiency of Solar Electricity Generation[J]. Chin. Phys. Lett., 2011, 28(12): 018401
Viewed
Full text


Abstract