CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
A 1100+V AlGaN/GaN-Based Planar Schottky Barrier Diode without Edge Termination |
CAO Dong-Sheng1, LU Hai1,2**, CHEN Dun-Jun1, HAN Ping1, ZHANG Rong1, ZHENG You-Dou1
|
1Nanjing National Laboratory of Microstructures, Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, and School of Electronic Science and Engineering, Nanjing University, Nanjing 210093
2National Key Laboratory of Monolithic Circuits and Modules, Nanjing Electron Devices Institute, Nanjing 210016
|
|
Cite this article: |
CAO Dong-Sheng, LU Hai, CHEN Dun-Jun et al 2011 Chin. Phys. Lett. 28 017303 |
|
|
Abstract AlGaN/GaN-based planar Schottky barrier diodes with various spacings between ohmic and Schottky contacts are fabricated without any edge termination. The reverse leakage current of the devices quickly saturates at low reverse bias when the two-dimensional electron gas (2DEG) at the AlGaN/GaN interface is fully depleted. The corresponding breakdown voltage is found to follow a linear dependence on contact spacing and exceeds 1100 V at a contact spacing of 20 μm, yielding a high VBR2/RON value of >280 MW⋅cm−2. The observations are tentatively explained by a "natural super-junction" theory, in which ionized surface states at front surface of the AlGaN barrier have to be neutralized by reverse surface leakage current from the Schottky electrode.
|
Keywords:
73.61.Ey
73.40.Kp
85.30.Kk
|
|
Received: 27 September 2010
Published: 23 December 2010
|
|
PACS: |
73.61.Ey
|
(III-V semiconductors)
|
|
73.40.Kp
|
(III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)
|
|
85.30.Kk
|
(Junction diodes)
|
|
|
|
|
[1] Chen W J, Wong K Y and Chen K J 2009 IEEE Electron. Device Lett. 30 430
[2] Ohno Y and Kuzuhawa M 2001 IEEE Trans. Electron. Devices 48 517
[3] Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T 2005 IEEE Trans. Electron. Devices 52 159
[4] Hsu J W P, Manfra M J, Lang D V, Richter S, Chu S N G, Sergent A M, Kleiman R N, Pferffer L N and Molnar R J 2001 Appl. Phys. Lett. 78 1685
[5] Arslan E, Butun S and Ozbay E 2009 Appl. Phys. Lett. 94 142106
[6] Hasegawa H and Oyama S 2002 J. Vac. Sci. Technol. B 20 1647
[7] Miller E J, Yu E T, Waltereit P and Speck J S 2004 Appl. Phys. Lett. 84 535
[8] Remashan K, Huang W P and Chyi J I 2007 Microelectron. Eng. 84 2907
[9] Ishida H, Shibata D, Yanagihara M, Uemoto Y, Matsuo H, Ueda T, Tanaka T and Ueda D 2008 IEEE Electron. Device Lett. 29 1087
[10] Miyoshi M, Kuraoka Y, Asai K, Shibata T, Tanaka M and Egawa T 2007 Electron. Lett. 43 953
[11] Wu Y F, Keller B P, Keller S, Kapolnek D, Kozodoy P, Denbarrs S P and Mishra U K 1996 Appl. Phys. Lett. 69 1438
[12] Arulkumaran S, Egawa T, Ishikawa H and Jimbo T 2004 Appl. Phys. Lett. 84 613
[13] del Alamo J A and Joh J 2009 Microelectron. Reliab. 49 1200
[14] Xing H L, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron. Device Lett. 25 161
[15] Ibbetson J P, Fini P T, Ness K D, Denbaars S P, Speck J S and Mishra U K 2000 Appl. Phys. Lett. 77 250
[16] Tirado J M, Sanchez-Rojas J L and Izpura J I 2006 Semicond. Sci. Technol. 21 1150
[17] Wen C P, Wang J Y, Hao Y L and Shen B 2008 2008 9th International Conference on Solid-State and Integrated-Circuit Technology 1–4 1086 (Peking University, Beijing 20–23 October 2008)
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|