CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Channel Temperature Measurement of AlGaN/GaN HEMTs by Forward Schottky Characteristics2010- |
ZHANG Guang-Chen1, FENG Shi-Wei1**, HU Pei-Feng1, ZHAO Yan2, GUO Chun-Sheng1, XU Yang1, CHEN Tang-Sheng3, JIANG Yi-Jian2
|
1School of Electronic Information & Control Engineering, Beijing University of Technology, Beijing 100124
2Institute of Laser Engineering, Beijing University of Technology, Beijing 100124
3Nanjing Electronic Devices Institute, Nanjing 210016
|
|
Cite this article: |
ZHANG Guang-Chen, FENG Shi-Wei, HU Pei-Feng et al 2011 Chin. Phys. Lett. 28 017201 |
|
|
Abstract Channel temperature measurements of multi-finger AlGaN/GaN HEMTs by forward Schottky characteristics are presented. The temperature dependence of the forward gate-source Schottky junction voltage is investigated and it is used as the temperature sensitive parameter (TSP) by pulsed switching technique. The channel-to-mounting thermal resistance of the tested AlGaN/GaN HEMT sample is 19.6°C/W. Compared with both the measured results by micro-Raman method and simulated results of a three-dimensional heat conduction model, the physical meaning of the channel temperature for AlGaN/GaN HEMT tested by pulsed switching electrical TSP method is investigated quantitatively for the first time.
|
Keywords:
72.80.Ey
78.30.Fs
|
|
Received: 17 May 2010
Published: 23 December 2010
|
|
PACS: |
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
78.30.Fs
|
(III-V and II-VI semiconductors)
|
|
|
|
|
[1] Guo L C, Wang X L, Xiao H L, Ran J X, Wang C M, Ma Z Y, Luo W J and Wang Z G 2009 Chin. Phys. Lett. 26 017301
[2] Hu G Z, Yang L, Yang L Y, Quan S, Jiang S G, Ma J G, Ma X H and Hao Y 2010 Chin. Phys. Lett. 27 087302
[3] Yang L, Ma J J, Zhu C, Hao Y and Ma X H 2010 Chin. Phys. Lett. 27 027102
[4] del Alamo J A and Joh J 2009 Microelectron. Reliab. 49 1200
[5] Meneghesso G, Verzellesi G, Danesin F, Rampazzo F, Zanon F, Tazzoli A, Meneghini M and Zanoni E 2008 IEEE Trans. Device Mater. Reliab. 8 332
[6] Chattopadhyay M K and Tokekar S 2008 Microelectron. J. 39 1181
[7] Blackburn D L 2004 20th Annual IEEE Semiconductor Thermal Measurement and Management Symposium (San Jose, CA 09–11 March 2004) 20 70
[8] Sarua A, Ji H F, Kuball M, Uren M J, Martin T, Hilton K P and Balmer R S 2006 IEEE Trans. Electron. Devices 53 2438
[9] Kuball M, Hayes J M, Uren M J, Martin T, Birbeck J C H, Balmer R S and Hughes B T 2002 IEEE Electron. Device Lett. 23 7
[10] McAlister S P, Bardwell J A, Haffouz S and Tang H 2006 J. Vac. Sci. Technol. A 24 624
[11] Kuzmik J, Javorka P, Alam A, Marso M, Heuken M and Kordos P 2002 IEEE Trans. Electron. Devices 49 1496
[12] Menozzi R, Umana-Membreno G A, Nener B D, Parish G, Sozzi G, Faraone L and Mishra U K 2008 IEEE Trans. Device Mater. Reliab. 8 255
[13] Darwish A M, Bayba A J and Hung H A 2008 IEEE Trans. Microwave Theor. Technol. 56 3188
[14] Kuball M, Rajasingam S, Sarua A, Uren M J, Martin T, Hughes B T, Hilton K P and Balmer R S 2003 Appl. Phys. Lett. 82 124
[15] ANSYS Inc. 2006 ANSYS Release 11.0 documentation
[16] Chang Y C, Zhang Y M, Zhang Y M and Tong K Y 2006 J. Appl. Phys. 99 044501
[17] Bertoluzza F, Delmonte N and Menozzi R 2009 Microelectron. Reliab. 49 468
[18] JEDEC 2000 JEDEC Publication No.110
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|